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ASICs — Al Specific Interated Circuits
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Tomorrow’s Smart Robots Empowered with Al & Senses

Sight Sensors provide data

Lots of Data! Big Data! What’s the 6" sense?
Then, there is LLM

Hearing

9




Some Suggested that 6" Sense is Equilibrium, but...

6 SENSES

b ~

HEARING VISION

TASTE TOUCH EQUILIBRIUM



The 15t Sense — Vision (A. Dai, Stanford, Princeton & TU Munich, 2017)

Scalable Data Acquistion

T
|

Dai, A. et al., "ScanNet: Richly-Annotated 3D
Reconstructions of Indoor Scenes,” 2017 CVPR.



https://www.bilibili.com/video/BV17E411Y7mC/?spm_id_from=333.337

The 2" Sense — Speech (M. Seltzer, Microsoft, 2017)

ithe screen.
As you see, 1t asks me:

want to customize

https://www.youtube.com/watch?v=80CPeMLIMEw



https://www.youtube.com/watch?v=80CPeMLJMEw

The 4th Sense — Taste (H. Miyashita, Meiji University, 2022)

\\

https://www.youtube.com/watch?v=P-V3EqQEuyQ



https://www.youtube.com/watch?v=P-V3EqQEuyQ​

The 34 Sense — Smell (J. McGann, Rutgers University, 2015)



https://www.youtube.com/watch?v=zaHR2MAxywg&t=99s%E2%80%8B

The 5t Sense — Touching (Z. Bao, Stanford University, 2016)

C&en

SPEAKING OF
CHEMISTRY

https://www.bilibili.com/video/BV1M4411j7wm/?spm id from=333.337



https://www.bilibili.com/video/BV1M4411j7wm/?spm_id_from=333.337​

The 5t Sense — Touching (J. Zhao & E.H. Adelson, MIT, 2023)

and ~20px/mm at the tip of the finger.

Mirror 1
B-Spline parameterized

Mirror 2
Light path

Reflection/refraction simulation

Ite.alanz.inf ialiang (Alan) Zhao and Edward Adelson, MIT CSA 10

https://www.youtube.com/watch?v=yl6 WDzfYD8Q&t=175s

Zhao, J., & Adelson, E. H. "GelSight Svelte Hand: A Three-finger, Two-DoF, Tactile-rich, Low-cost Robot Hand for Dexterous Manipulation,”
arXiv preprint arXiv:2309.10886, 2023

Zhao, J., & Adelson, E. H. "GelSight Svelte: A Human Finger-shaped Single-camera Tactile Robot Finger with Large Sensing Coverage and
Proprioceptive Sensing," arXiv preprint arXiv:2309.10885, 2023
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https://www.youtube.com/watch?v=yI6WDzfYD8Q&t=175s

The 6" Sense — Indoor Positioning (A. Arun, UCSD, 2022}

://www.youtube.com/watch?v=JjalvBHqC94&t=111s%E2%80%8B

Arun et al., "P2SLAM: Bearing Based WiFi SLAM for Indoor Robots," —:
IEEE Robotics and Automation Letters, 7(2), 3326-3333, 2022.



https://www.youtube.com/watch?v=JjalvBHqC94&t=111s%E2%80%8B​

So, how does influence the chip design?



[3] Vision SoC by Mojo Vision, 40nm CMOS ULP, 21000pum?

Imager Imager Processor

Technology CIS BSI FEOL 90nm/BEOL 65nm Architecture Linear contrast filter + Serial
Supply Voltage 3.3V (pix.), 1V (ana.), 0.8V (dig.) Imagecorvolutio fifters
Die Size T —— Technology 40nm CMOS ULP
Array Size 256 X 256 monochrome S Naltage 0.8V
Pixel Size 1.75um X 1.75pum Wit Gueiuns. | A¥MIbgs
Readout Modes Progressive 4, 6 and 8 bits, e 21000um’

Subsampling 2x,4x and 8x Energy 34pl/frame/pixel
Chip /O SPI, Custom high-speed serial Eclency
com-son | e (W‘}’ oo

Dynamic Range

53dB? (gain=1x), 42dB? (gain=8x)

Random Noise

4.6 at gain = 8%

ROW DECUDER

Wake-up Time <150pus from deep-sleep mode
ADC FOM 20f)/conv-step (with ref.) at 8 bits
Energy Efficiency | 21pl/frame/pixel® at 8 bits
13pl/frame/pixel® at 4 bits NK PIXEL ARRAY
Power 61uWP, 82uWFE at 8 bits, 44FPS B

75uWP, S5uWE at 4 bits, 88FPS

a EMVA Standard 1288 definition
b Excludes power to send data off-chip
¢ Includes power to send data off-chip (5.5pF load)

o Singh, Rituraj, et al. "34.2 a 21pJ/frame/pixel imager and 34pJ/frame/pixel Image
Processor For A Low-vision Augmented-reality Smart Contact Lens." 2021
IEEE International Solid-State Circuits Conference (ISSCC). Vol. 64. IEEE, 2021.



[7] Vision SoC by University of Michigan, 22nm CMOS, 2.56mm x 3.42mm

3.42 mm

IAMEM,
Image Interface
and SPI Slave

: [Neural Vision
Processing
Unit (NVPU)

2MB

[ eoepmu) ;. |

AAEREERRERE R R AR AR RRAERREERR R R R AR R

——— Wl 9§'g———

MRAM Macro

VLSI'17[4] | JSSC'19[3] | ISSCC19[g] | ISSCC 21 [10] VLSI 21 [11] This Work
Technology 28nm CMOS | 85nm CMOS | 22nm FDSOI | 22nm FDSOI 40nm CMOS 22nm CMOS
Appl Multi-View Visual-Inertial Image DNN for T Edge NN Inference | CNN and Non-CNN Vision for
B Depth Odometry Processing and Weight Tuning |  Micro-Robotf Navigation
Processing Dedicated Dedicated Streaming- | CMP and NN SystolicAmay | HYorid Systolic 2D-Mapping
Architecture Accelerator Accelerator based CGRA Accelerator PE Array
Not Not Only for General Purpose General Pu
Proorammetity | ovogrammatle | programmatle | “procsssng |~ amt | oM | imegeprocessingandve |
Die Area 5.96mm? 20mme 2.9mm? 12mm? 29 2mm? B.76mm?
SRAM 582.5 kB 854 kB 690 kB 1728 kB 0.5 MB 1428 kB
On-Chip NVM NIA NIA NIA aMB MRAM 2MB RRAM ZMB MRAM
Voltage 0.9V 1.0V 0.8V 0.5~ 0.8V 1AV 0.5~ 1.0V
Fraguency J00MHz B82.5MHz 5 ~ 220MHz 32kHz ~ 450MHz 200MHz 58kHz ~ 190MHz
Powear 3B0mwW 24mwW 10.7 ~ 101.4mW | 1.TpW ~ 48.4mW 126mvW 4B8uW ~ 158mW
Poak ";,':,f"" Proc. | NotReported | 59.1GoPS! Not Reported NIA 207GOPS2 @ 1.0V, 180MHz
INT8 Poak NN . A usaors! 32.2G0PS? J—— 511GOPS® @ 1.0V, 190MHz
Perf. {NN Accelerator) {14@?5’ INT18)
ﬂ.m“ Shi- 0.22nJ/pix, 3.4mW,
F“'I’E';ﬁ‘ﬂ:""“" NIA Tomasi comer | NotReported | Not Reported NIA 50fps VGA, Harris comer
and 1.40nJ/pix" 0,52V, 20MHz
S sparse LK flow, | 1.18nJipix, 0.22nJipix, 1.6mW,
Emm""’“'q 9 NIA 71fpsWide- | 30fpsVGA. | NotReported N/A 23fps VGA, sparse LK flow (<
VGA (752x480) | dense LK flow 100 features) @ 0.52V, 20MHz
Dense Depth | 0.042nd/pix, ,L‘;“m”‘“ﬂ;&:'"hﬁ,
Estimation | 32fps 2K, stereo NIA NotReported | Not Reported NIA Leppireede
Eficlency local matching
@ 0.62V, 50MHz
INT8 NN Inferance 1.3TOPSW- 4 12.1TOPS/W*. 5§
Efficiency NA NA NotReporied | .\ Acosierstor) |  22TOF 8P (3.5TOPS/M® 5 INT16)

1 OP definition not specified. Energies calculated from Fig. 11 and Table |Il in [3]. 2 16b/32b mult/add = 10P. * 8b MAC = 20Ps. Our 16b MAC
{16b mult, 32b add) is normalized to 7OPs as per [12]. 1 Sparsity not specified. 5 80% weight sparsity and 50% input activation sparsity.

o Zhang, Qirui, et al. "A 22nm 3.5 TOPS/W Flexible Micro-Robotic Vision SoC with
2MB eMRAM for Fully-on-Chip Intelligence.” 2022 IEEE Symposium on VLSI
Technology and Circuits (VLSI Technology and Circuits). IEEE, 2022.



[9] Vision SoC by iniVation AG & iniLabs GmbH & INI UZHD, 65nm 1P9M, 2mm x 2mm

This Work | K] [2] [1]
Technology 65nm TPaN Snm TFYM BS| (. 1dum 1PeM | 0. 35um JP4M [ 35um 2P4M
Fesalulon 132x104 ENFTE] 240 T80 1£8x1.28 128128
LAhip ize {mm©) 20 o8 x5 4 9%4 4 b, Jxb
- 2mm Fixel Size (umd) 10x10 Hyl 18.5x18.5 3130 4040
/ Fill Factor (%) 20 - ] 10.5 8.1
SAER Column Logic pﬂ E.r EUDDI'!'..[ﬂ 1‘2 E'E ﬁ 1'2 33 '5' 15 33 3'3
High Activity 4.9a180Meps a S0m300Meps 14 . 24
[m'l"i"l Low Activity 0.25@100keps a 21 @ 100keps D d -
Normalized | Dynamic (plevent) ] T - - -
Power b | Static (nW/pixel) 18 7 - - -
E Max Event Rale (Megs) 180 300 12 20 pl
(Readoul Efficency (eventicock)| best: 4, worst: 0.25 ¢ |best: 6.7, worst: 0077 d - =

a The power includes bias generator and 10 power and was measured using identical blas configuration.

b The normalized power is calculated as:

Dynamic Energy = (P, - P}/ (R, - R, Stalic Power = (P, - R, - Dynamic Energy) / N, where P, is power at hagh activity, P, is
power at low activity, R is event rale at high activity, R, is evenl rate at kow activity, N, is iotal number of pixels.

c The best case is when all events are in the same row of groups, the worst case is when all events are in different rows of
groups, where 3 mnimum of 4 clocks per row is needed.

d The best case is when all events are in the same column, the worst case is when all events are in different columns, where a
minimum af 13 clocks per column is needed

o Li, Chenghan, et al. "A 132 by 104 10pm-Pixel 250uW 1lkefps Dynamic Vision Sensor
With Pixel-parallel Noise And Spatial Redundancy Suppression.” 2019 Symposium on
VLSI Circuits. IEEE, 2019.




[10] Speech SoC by Seoul National University, 28nm LP, 0.9mm x 0.9mm

o Park, Sungjin, et al. "22.8 A0. 81 mm 2 740uW Real-Time Speech Enhancement
Processor Using Multiplier-Less PE Arrays for Hearing Aids in 28nm CMOS." 2023 IEEE

s

: Technology|  28nmLP
- Core Area | 0.9 x 0.9 mm’
3 °§Rﬁ=’ 35kB
s ‘?m 0.8V - 1.1V
: Frequency |  2.5MHz
k=1 Power | @ o.;c?;guﬂz)
pg Efficiency | 11.75pJ/frame
L3

faid

International Solid-State Circuits Conference (ISSCC). IEEE, 2023.
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[11] Speech SoC by University of Michigan & Intel, 40nm LP CMOS,

o Kang, Taewook, et al. "A Multimode 157uW 4-Channel 80dBA-SNDR Speech-

u iy
SEENEEERE H

A
} -

This Work [4] Kang [1] Lee [8] Liu [3] Sainath Google Home
il Analog mic. Analog mic. Analog mic. Digital mic. Digital mic. Digital mic.
+Single chip +Single chip +Single chip +Multichip +Software +Multichip
Technology 40nm LP CMOS 40nm LP CMQS | 40nm GP CMOS 90nm CMOS - -
Area (mm?) 0.94 0.89 1.1 0.47 MIA MNIA
VDD
(Analog / Digital) 1.0v 0.7V 1.OV/I0.7V 1.0V 1 0.55V -10.33V
# Signal Sources 4 4 8 2 2 2
. Adaptive Adaptive ADCs, )
ADCs, adaptive ADCs, adaptive ADCs, fixed beamforming beamforming beamforming,
Functionality beamforming, beamforming, beamforming, (fixed steering) St extrar:ﬁm feature
feature extraction feature extraction | feature extraction T cm . skt ietion " | extraction,
classification
DR [BkHz BW] 80 / 65dBA" 83dBA B85dBA - - 108dBA
BW 8kHz 8kHz BkHz BkHz BkHz BkHz
_ Fixed Adaptive Grifiths- | Adaptive
Beamforming Type | Adaptive GABF Adaptive RGSC delay-and-sum Jim filter-and-sum with
trained coefficients
DOA Correction Yes No No No NIA N/A
g:g:ﬁe Yes No No No No NIA
Convolutional long
Log-Mel filter bank | Log-Mel filter Log-Mel filter bank | FFT-based Log
Feature Type short-term memory
energy bank energy energy filter bank DNN fiter bank
# Features 40 40 60 8 128
AFE Power
Consumption 48 | 23pwW* IBTUW 0.81mwW -
gfﬁsm;n 109/ 49w 2804W 3.AmW 0.AmiW 4 4mwee

*CTNSSAR. | NSSAR, *GABF full / DTDAS only, *** Excludes ADCs,

**** Calculated from datasheets, only includes MEMS microphones, ADCs.

Recognition Frontend With Self-DOA Correction Adaptive Beamformer." 2022
IEEE International Solid-State Circuits Conference (ISSCC). Vol. 65. IEEE, 2022.
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A53 CPU
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[12] Speech SoC by Cornell University & Harvard University & Tufts University, 16nm FFC, 5mm x 5mm

Workiond FFT, Application|Markov Random| Attention-based
Technology TSMC 16nm FFC Logic Field seq2seq models
Die Aron Py Data Type FP64 FxP32 FP8
== Area 6.21mm* 1.31mm* 8.84mm*
ot SRAM e SRAM 2.41MB 0.103MB 5.03MB
Gate Count 1M Voltage 0.55 - 1V 0.55-1V 0.55- 1V
Clock Domains 6 Frequency | 354 — 775MHz | 287 — 651MHz | 130 — 573MHz
Power Domains 5 Howec S 50.4mW 42.2mW 214mW
Fmax/0.8V
Supply Voltage 0.55 - 1V
e < 4.33-17.6 26-78
Packaging Flip-chip BGA-672 ROWSCEN. Gsamples/s/W | TFLOPS/W

o Tambe, Thierry, et al. "9.8 A 25mm 2 SoC for IoT Devices with 18ms Noise-robust
Speech-to-text Latency via Bayesian Speech Denoising and Attention-based Sequence-
to-sequence DNN Speech Recognition In 16nm Finfet." 2021 IEEE International Solid-
State Circuits Conference (ISSCC). Vol. 64. IEEE, 2021.
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[15] Speech SoC by University of Michigan & Intel, 40nm GP, 1.5mm x 1.3mm

Ana. (Amp2)

General specifications Beamforming
Process 40nm GP Freq. selective
— Method .
Die size 1.5x%1.3mm? emne True time
Package 48-pin QFN No. Channels 8
Analog VDD 1.0V Time resolution 3.42us
Digital VDD 0.55V Steering resolution 2.62°

Main Clock Freq. 2.048MHz

(Linear 1" array)

SD ADC specifications (1ch)

Feature extractor

Area 300x180um? Extraction type Mixed signal
Sampling Freq. 2.048MHz Feature type Mel filter-bank
Bandwidth BkHz MNo. Features 60
Power 91uW Frequency range 70-8000Hz
SNDR B4dB Window time 25ms
Input impedance 60k Overlapping time 10ms
Output data width 24bit

o Lee, Seungjong, et al. "An 8-element Frequency-selective Acoustic Beamformer And
Bitstream Feature Extractor With 60 Mel-frequency Energy Features Enabling 95%
Speech Recognition Accuracy.”" 2020 IEEE Symposium on VLSI Circuits. IEEE, 2020.



[16] Speech SoC by Tsinghua University & National Tsing Hua University & TsingMicro Tech, 65nm CMOS, 3.7mm x 2.6mm

Chip Summary
Process 65nm CMOS
Supply Voltage 0.9-1.1V
Frequency 5 - 75MHz
Core Size 3.1x2mm?
Die Size 3.7x2.6mm?
Logic Gates
(NAND2) ™
SRAM Capacity 10KB
SRAM-CIM
Macro Capacity 16x4Kb
Latency per Inference | 127.3us - 1.91ms
Energy per Inference | 3.36uJ - 49.2uJ
Energy per Neuron hi-1432
pJ/iNeuron
Arithmetic Energy 6.45-11.7
Efficiency TOPS/W
(a) Chip Summary

RNN Engine

using 16 CIM
SRAM Macros

(b) Chip Photograph

o Guo, Ruiqi, et al. "A 5.1 pJ/neuron 127.3 us/Inference RNN-based Speech Recognition

Processor using 16 Computing-in-Memory SRAM Macros in 65nm CMOS." 2019
Symposium on VLSI Circuits. IEEE, 2019.

Compressed
Quantization
Unit



Let’s step back and think a little...

(Remember: don’t run in the wrong way)



Al Processors: The Strong Body Under the Master Mind

* The development ot ==

Compute Amount (Pflop/s-days)
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The 1/0 Bottleneck in Von Neumann Al Chip

* Due to the increasing size and computation of Al models, conventional
digital Al chips usually suffer from massive data movements between
separate compute and memory.

Memory Access Energy > Compute Energy

(45nm 2nJ
Technol
" 3 1000 | echnology)
SHONEN ) 100pJ
w) .4 2 £ 100
N I/ g o) 20
i 5% , w0 =
i ¥ ot MULT FP32 : 4pJ
: llllllg ¥ 52 MULT INT32: 3pJ
/. oo L o MULT FP16 : 1pJ
MAC Units [, L MULT INTS : 0.2pJ
v s 1L : .. MULT INT4 : 0.05pJ
0 Digital MAC 8kB  32kB  1MB  DRAM
Memory Size (D)

[Horowitz, ISSCC’14]
[Jia et al., ISSCC’21]



But the interconnects (high-speed 1/0s) are not
energy-efficient and dense enough

Hence, CIM design has taken the center stage



High-Speed I/O Trend: Per-Lane Data Rate Growth

— 256 —=-FPCle
:'-.'::‘ 128 - | | | . . —e—aPIKTI
O -
— 64 ,
[ 2 —=SATA 0 Data-rate per pin has
o 16 ——sAs approximately X2 every four
:..: X B years across various 1/0
c . ~+—DDR standards ranging from
E 5 ——GDDR DDR, to graphics, to high-
Q —ce speed Ethernet.
1 |
4] —&—Fibre
_|l Channel
E 0.5 ~l—HDMI
a. (.25 ~4—DP

2000 2004 2008 2012 2016 2020 2024
Year
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Data Rate vs. Process Node

1000

[
o
o

Y
o

Data Rate [Gbps]

2007
¢ 2008

¢ 2009
| : 2011
O i ¢ 2012

n L ow = 2013
- = 2014
w e . = 2015
i__ | ~2016

* = 2017

A £ = 2018
* 2019
x 2020

A 2021

10 100 ® 2022
Process Node [nm]

0 PAMA4 transceivers have kept pace

at 56Gb/s and 112Gb/s while
taking advantage of CMOS scaling
below 10 nm for more aggressive
channel loss compensation.
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Trends: Bit Efficiency vs. Channel Loss

1000.00 ;

—_ : ¢ Other ] ]
a e ¢ 0 Channel loss compensation by different
< ;' = 1S5CC 2022 equalization techniques is essential
Y 10000 fzszszszszzzzssdzszszzzzeazczc .
= o «* ~0.2 pl/bit/dB-loss
= ’ 1 for Long Reach 0 Power efficiency better than ~1-2 plJ/bit
E 10.00 [----2-¢-.-®-- 0’ oot 9‘$ ______________ only for Short Reach with < 20 dB loss
Q ?. b2 ¥
w] Vo * “ ‘, * f.
= 6 * ¢ ' 1* | [
L w? e | 0 Power efficiency ~5-10 pJ/bit for Long
L 100 [e-s"-g-- T S——— .
9 ot $ ~0.1 pJ/bit/dB-loss Reach with up to 50 dB loss
& for Short Reach

0.10 ' '

0 20 40 60

Channel Loss at Nyquist [dB]
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Outlook for Al Chip Research Directions

Data Buffer

\ Shared Input @
\_ REGs

PEArray0 )

Thinker, JSSC’18 Evolver JSSC’21

Apphcatlon -Driven Arch. Innovatlon

Technology-Driven Arch. Innovation

Inference Learmng, Transformers

DUET, MICRO’20
DOTA, ASPLOS’22

Al Research  MulTCIM, ISSCC’23

Co-DeSIgn

Digital Architecture, CIM

ReDCIM, I1SSCC’22, TranCIM, ISSCC 22,
J55C"23 J55€’23

Innovation EAULInEI{ N[V

SA -

RANA, ISCA’18
INSPIRE, ISCA’22

TensorCIM, 1S5CC23 |
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Smart Construction Robots

0 Robot + Al: a new flashpoint for the development of the construction industry *

*https://www.bzlrobot.com/list.html

0 BIM: the basis for efficient, fast, and autonomous intelligent operations

0 The future market demand and scale are huge: reach an estimated $9 billion by 2025
with a CAGR of 9% to 11% from 2019 to 2025 *

Scanning frequently allows teams to verify that
the work in place matches the original design.

“AECOSIm

BaS A1 Building Des

*https://--ResearchAndMarkets.comwww.businesswire. com/news/home/20210412005399/en/G|oba| Building-Information-Modeling-Market-2021- 2025 Trends Forecasts- and Compet|t|ve AnaIyS|s



Enabling Technologies in Our Smart Construction Robots
1. Positioning: VLP 2. Path planning: RL 3. 3D scene: CDRNet & 360 Camera

Robot + 360

Robot+360
90° Lo *

= e
Las
Left 2

y 200
1o
/& iz
Fias
\ l‘.:)_”
ors

..,&”1

Right

Visualization of perspective views and the corresponding pose using VLP

3D reconstructed model using CDRNet with input images captured using a 360
camera mounted on the robot

Reinforcement learning for multi-robot path planning and collaborative task



Visible Light Positioning (VLP) for Smart Construction Robots

! ; ! I Visible light ! ! OnelED ! ! package and transmit the positioning data I ST T T TS Tt T T T s T s e e m e e
1 LED light source | - |
(120 tght source @1 vansmission_! D1 cappuret__| @1 pubichedoy diferent message sources___+ ) Calculate the global position of robot !
Y Fa
. Lol Lol ol | 101101011 | | {AME——F————— o= ----- 1 mmmmmmm—m - 1 o mmm———mm-
J derthessme 11 owapocesig || Sneelen
coding and modulation LED Camera Llen LED-ROI === === i P P galg

image-sensordata

obtainthe
positioning data

angle-sensordata

I |
synchronization
I e e e e oo =
1
|magnetomeberl t 1 Lo bommmmmm
|

- - - - Original Image Detected Result
Magnetic Field

Sensor and
| Accelerometer |

l 500

- - [ Compute |
Find the Ellipse | Rotation Matrix

500

- 1000 1000

Detect
Elliptical Curve

Center. Major and Translation
and Minor Axes ;
Matirx

Compute
Camera World

Captured
Image

1500 1500

Dilation

Coordinates

Lookup LED

Decode Rolling Demodulate .
= IDin

Shutter Patterns LED ID

Coordinates

Find LED World]_ 200 600 1000

Database

W. Guan et al., "Robust Robotic Localization Using Visible Light Positioning and Inertial Fusion,” IEEE Sensor Journal, 2022.



Enabling VLP in Ordinary LED Lighting

+
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ACIn

r/'

A0101101

S HCE |l
BRIl A
mE R c
mE .
-: :. . E
e .-
R _E

"\ Row Access |[ ADC |*

\,

VLC Signal produces
Rolling Shutter Pattern
on CMOS Imager

+
Modulator
DC Out # A
/ \
, \
2 =
> S|
Power Management Bluetaoth
(iBeacon)
VLC Controller Ca

i Region of Interest
Detection

Threshald
Detection

' Cenvert to Binary

] Frame Detection

/" Image Processing

1010

- ID to URI
—-/ Translation

34



Reinforcement Learning (RL)

0 An approach where an agent learns to make
optimal decisions by interacting with an
environment through trial and error

0 Enables adaptive and versatile behavior across
diverse tasks and domains

0 Advantages

> Ability to learn from experience and adapt to changing
environments

» Can handle complex decision-making problems

» Offers potential for breakthroughs in various domains
such as autonomous systems

reward R,

https://www.researchgate.net/figure/Figure-from-deep-minds-introduction
-to-reinforcement-learning-course-Silver-2015-To_fig2_368665532



Multi-Agent Reinforcement Learning (MARL)
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Environment

0 Trains agents to make decisions in a coordinated manner
0 Enables agents to handle complex scenarios, strategic interactions in various domains

0 Important applications
» Multi-robot coordination: Coordinating actions of autonomous robots for tasks like exploration,

surveillance, or swarm behavior
» Traffic management: Optimizing traffic flow and reducing congestion in for self-driving vehicles

» Resource allocation: Optimizing resource distribution in scenarios like power grids



Multi-Agent Path Finding with RL
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positions goals goal

PRIMAL, Sartoretti et al., RA-L'19 GNN for Decentralised Multi-agent Path Planning, Li et al., IROS’20

QO Limitations
» Using broadcast communication which caused waste of bandwidth and energy
> Rely on expert algorithms that do not scale well on complex scenarios



Results on Optimized MARL

0 Scenario: Multi-agent path finding

> >

» Warehouse robotics

> Multi-robot exploration in hazardous areas N N

0 Experiment on optimizing Field-of-View (FOV) o /? @“/ﬁ. o
\

» FOV impacts agents' perception, navigation, > =
opportunity awareness and communication in MARL

> FOV affects coordination and communication through o o
overlapping views

0O Tested the performance in metrics such as success rate, lllustration of 3x3 FOV (left) and 7x7 FOV (right)
number Of Communications etc Elogmber of Communication versus Number of Agents in 80x80 Map
’ L]

—— 3x3
5x5
—a— Ix7
—+— Ox9
—¢ 11x11

» FOV size does not always correlate with improved
performance; increasing it may weaken performance

200 1

» Smaller FOV sizes can be more effective as performance
does not decrease proportionally with FOV size

Number of Communication

o
I

4 8 16 32
Number of agents

H. C. Cheng, L. Shi, C. P. Yue, “Optimizing Field-of-View for Multi-Agent Path Finding via Reinforcement Learning: A Performance and Communication
Overhead Study,” 62nd IEEE Conference on Decision and Control (CDC), in press.



Construct 3D Models by Fusing Depth Map

Raycasted Vertex &
Normal Map
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O Limitations
» Range sensor is infeasible for light-weight
hardware
« Costly
- Power hungry
» Depth map suffers from noise and
low albedo issues
39
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O Limitations

» Implicitly learn TSDF without any prior knowledge

» Global volume average, not real-time
Not a fit for the real-world SLAM usage
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Prior Works and Limitations on 3D Reconstruction

0 Recent 3D reconstruction works S5x speed RGB Image
are mostly based on cameras
equipped with depth sensors
(RGBD camera or LiDAR)

0 Construct truncated signed
distance function (TSDF)
representation for surface
reconstruction

» Microsoft Kinect (KinectFusion)

TSDF Illustration

O Limitations
> Cost ®
> Latency ®

Depth Map


https://www.bilibili.com/video/BV1aq4y1f7qN?spm_id_from=333.999.0.0

Proposed 3D Perception Pipeline: CDRNet

—————————————
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0 Sparse 3D convolution to improve efficiency

0 Temporal: Using gated recurrent units (GRU) to infer a local truncated signed distance
field (TSDF) volume and merge into global features

0 Spatial: 2D explicit inference as a prior knowledge to refine the 3D feature

Z. Hong et al., “Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception from Monocular Video,” IEEE/CVF ICCV workshops, 2023.



Results on A Large-Scale Public Dataset

Ground - y W NeuralRecon+ VoRTX+
Truth N O Semantic-Heads 5 Semantic-Heads

0 Evaluated on the ScanNet dataset
» 2.5M RGB-D images and 1513 3D scans in total

0 Achieves the best 3D perception performance, sometimes surpasses the ground truth

A. Dai et al., “ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes,” IEEE/CVF CVPR, 2017. 43



Real-Time 3D Perception Using CDRNet

See video

FPS: 158, Fragmented Mesh Rate: 2.38/sec


https://www.bilibili.com/video/BV1SH4y1S7ry/?spm_id_from=333.999.0.0

3D Reconstruction using 360 Camera

0 Advantages of using 360 cameras

» Captures full spherical view, enabling
a comprehensive coverage of the environment

» More time-efficient in capturing the environment
than perspective cameras
0 Using 360 cameras is a common practice in
industries for monitoring purposes (e.g., BIM)

0 Challenges
» Calibrating 360 camera

» Integration with existing deep learning pipelines
and workflows

Equirectangular Projection (ERP)

45



ERP Image Conversion

) ) ) Theta to ROS Bridge Equirectangular (ERP)-to-Perspective
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Linux Driver JPEGs | |mage Conversion

Lattitude Image Conversion

RREE

Driver Interface Publish topic Publish topics
/image360 [rectimgl

[rectimg2
[ - Gstreamer [rectimg3

Longitude

0 Convert Equirectangular Projection (ERP) images to 4 perspective images
0 Each view has a field of view of 90°

0 Treat the 4 views as part of cube-maps, resembling four virtual cameras pointing in
different directions

0 The final perspective images are compatible with established deep learning pipelines

H. C. Cheng et al., “Leveraging 360° Camera in 3D Reconstruction: A Vision-based Approach,” 2023 2nd International Conference on Video and
Signal Processing, in submission. 46



Pose Estimation & 3D Reconstruction Results

0 IMU and LIiDAR are used to calculate
the pose (rotation & translation) of the

camera
0 The 4 perspective images' poses

are transformed from ERP's pose with

rigid body rotation

a Atlas: Convolutional Neural-Network-
based TSDF Estimation Model

» Input: perspective images
converted from ERP and their
corresponding poses

90

Right

The reconstructed scenes in HKUST

Hame Maries



Market Driven=> Application-Specific => Power Awareness

0 The demand for Al algorithm computing power has surged, and the energy
consumption of hardware systems may lead to "Demand exceeds Supply"

» The amount of algorithm calculations doubles every 3-4 months, and the
hardware computing power doubles every 18-24 months

»The domestic advanced technology is stuck, and it is urgent to break
through the limitations of advanced technology blockade on intelligent
computing energy efficiency

0 Smart construction robots with embodied Al and multi-robot human
collaboration have been investigated
»indoor positioning, multi-agent planning systems, 3D perception, and
360° imaging
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