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Introduction: Background

We are now in an era of artificial intelligence (AI)

Hardware to support AI:
– High performance computing (HPC) systems
– High performance data transmission

High-bandwidth Memory IO
(Chip-to-memory)

PCIE, NVLink
(Inter-component, chip-to-chip)

Data Center
(Server-to-server)
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Introduction: Wireline Transceivers

Wireline transceivers: transmitter (TX), channel, and receiver (RX)

Clock signal plays an important role in providing synchronization 
and supporting various functionalities

Channel

Transmitter Receiver

Clock Clock

Data ... ADC Data

M
UX
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Clocking Architectures in Wireline Systems

Clocking architecture
Sub-rate (1/4) Architecture

Data (32 Gbps)

CK_IP (8 GHz)

CK_QP (8 GHz)

Global CK (8 GHz)

Half-rate Architecture

Data (32 Gbps)

CK_P (16 GHz)

CK_N (16 GHz)

Global CK (16 GHz)

CK_IN (8 GHz)

CK_QN (8 GHz)

Straightforward implementation

High-power clock generation and distribution
Relieved power and bandwidth issue

Requires multi-phase sampling clocks
Bandwidth issue for clock buffers
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Clocking Architectures in Wireline Systems

Quadrature clock generation (QCG): generating 4-phase clocks from 
differential clocks with:
– High phase accuracy (duty cycle = 50%, quadrature phase = 90°)
– Least jitter contribution

CK_1P (0°)CK_1N (180°)

  

 

 

  

CK_IP (0°)CK_IN (180°)

CK_QP (90°)

CK_QN (90°)

CK_1P

CK_1N

CK_IP

CK_QP

CK_IN

CK_QN

QCG

QCG
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CK_IP
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Clocking Architectures in Wireline Systems

Requirements for quadrature clocks:
– Jitter ~ system random jitter (RJ)
– Phase error ~ system deterministic jitter (DJ)

A quarter-rate wireline transmitter using:
(a) Ideal 4-phase sampling clocks  

Good eye quality
Explicit transitions
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Clocking Architectures in Wireline Systems

Requirements for quadrature clocks:
– Jitter ~ system random jitter (RJ)
– Phase error ~ system deterministic jitter (DJ)

Degraded eye quality
Transitions blurred/distributed

A quarter-rate wireline transmitter using:
(b) 4-phase sampling clocks with jitter 10
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Clocking Architectures in Wireline Systems

Requirements for quadrature clocks:
– Jitter ~ system random jitter (RJ)
– Phase error ~ system deterministic jitter (DJ)

Eye quality degraded
Transitions split

A quarter-rate wireline transmitter using:
(c) 4-phase sampling clocks with phase error-1 11
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Clocking Architectures in Wireline Systems

Requirements for quadrature clocks:
– Jitter ~ system random jitter (RJ)
– Phase error ~ system deterministic jitter (DJ)

Eye quality degraded
Transitions spilt more

A quarter-rate wireline transmitter using:
(d) 4-phase sampling clocks with phase error-2 12
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Clocking Architectures in Wireline Systems

Requirements for quadrature clocks:
– Jitter ~ system random jitter (RJ)
– Phase error ~ system deterministic jitter (DJ)

Eye quality degraded
Transitions spilt and blurred

A quarter-rate wireline transmitter using:
(e) 4-phase sampling clocks with both jitter and phase error 13



Review on QCG Circuits: Frequency divider

Frequency divider: most commonly used QCG
– Input duty cycle determine the output phase accuracy

Straightforward implementation
High power consumption
Requires high-frequency clock generation and distribution

DCC

DCD

I/Q 
Divider

2 2 4

0.5x period for 2F
0.25x period for F

REF (2F)

CK_I (F)

DCC: duty cycle correction
DCD: duty cycle detection

CK_Q (F)

Low jitter
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Frequency Divider QCG [1] [1] JSSC 2020



Review on QCG Circuits: Delay-Locked Loop

Delay-locked Loop (DLL)

Delay line
2

PD

4/8
1st order loop, unconditionally stable

Need for high-resolution phase detector

Limited operational range

Low power consumption

Low jitter contribution

PD: Phase Detector

Delay-Locked Loop QCG [2]

REF CK Output

15[2] ISSCC 2022



Review on QCG Circuits: Ring Oscillator

Ring-oscillator-based QCG
– Ring oscillator phase-locked loop (RO-PLL)
– Injection-locked ring oscillator

High phase accuracy

Poor jitter performance (>200 fsrms)

Open-loop, simple implementation

Poor phase accuracy

2 4
RO stage #1

Sensitive to mismatch, losing lock

Improved jitter performance

PD LFP

Ring Osc.
2

4/8

RO-PLL QCG [3]
Injection-Locked RO QCG [4]

REF CK Low-noise
injector

Output Output

16[3] JSSC 2020 [4] JSSC 2008
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Proposed QCG with Open-loop QEC

Proposed QCG:
– Duty cycle correction (DCC)
– A digital controlled delay line (DCDL)  
– A 2-stage open-loop quadrature error corrector (QEC)
– FSM for automatic calibration

QED

0°/180°

θ/θ+180°

DCD

 

CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)
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Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction

Coarse QCG (DCC+DCDL) Fine QEC (PI) 
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QED

0°/180°

θ/θ+180°
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CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)
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Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction

Proposed QCG with Open-loop QEC

Proposed QCG:
– Duty cycle correction (DCC)
– A digital controlled delay line (DCDL)  
– A 2-stage open-loop quadrature error corrector (QEC)
– FSM for automatic calibration

0°/180°

θ/θ+180°

DCDL (≈90°)

2

PI-QEC 
Stage#1

PI-QEC 
Stage#2
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Proposed QCG with Open-loop QEC

CK_1P (0° or 360°)CK_1N (180°)

CK_1P (0°)

CK_1N (180°)

 

 

 

 

 

 

Vector Diagram

Timing DiagramOperation principle
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CK_1P (0°)

CK_1N (180°)

CK_2P (θ)

CK_2N (180°+θ)

CK_IP (θ/2)

CK_QP (90°+θ/2)

CK_IN (180°+θ/2)

CK_QN (270°+θ/2)

CK_1P (0° or 360°)

CK_2P (θ)

CK_1N (180°)

CK_2N (θ+180°)

Proposed QCG with Open-loop QEC

Operation principle
– Delay

θ

Vector Diagram

Timing Diagram

Delay
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CK_1P (0° or 360°)

CK_2P (θ)
CK_IP (θ/2)

CK_1N (180°)

CK_2N (θ+180°)

CK_1P (0° or 360°)

CK_2P (θ)

CK_1N (180°)

CK_2N (θ+180°)

Proposed QCG with Open-loop QEC

CK_1P (0°)

CK_1N (180°)

CK_2P (θ)

CK_2N (180°+θ)

CK_IP (θ/2)

CK_QP (90°+θ/2)

CK_IN (180°+θ/2)

CK_QN (270°+θ/2)

Vector Diagram

Timing DiagramOperation principle
– Delay
– Middle phase generation

22



CK_1P (0° or 360°)

CK_2P (θ)
CK_IP (θ/2)

CK_1N (180°)

CK_QP (90°+θ/2)

CK_2N (θ+180°)

CK_1P (0° or 360°)

CK_2P (θ)
CK_IP (θ/2)

CK_1N (180°)

CK_2N (θ+180°)

Proposed QCG with Open-loop QEC

CK_1P (0°)

CK_1N (180°)

CK_2P (θ)

CK_2N (180°+θ)

CK_IP (θ/2)

CK_QP (90°+θ/2)

CK_IN (180°+θ/2)

CK_QN (270°+θ/2)

Vector Diagram

Timing DiagramOperation principle
– Delay
– Middle phase generation
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CK_1P (0°)

CK_1N (180°)

CK_2P (θ)

CK_2N (180°+θ)

CK_IP (θ/2)

CK_QP (90°+θ/2)

CK_IN (180°+θ/2)

CK_QN (270°+θ/2)

CK_1P (0° or 360°)

CK_2P (θ)
CK_IP (θ/2)

CK_1N (180°)

CK_QP (90°+θ/2)

CK_QN (270°+θ/2)
CK_2N (θ+180°)

CK_IN (180°+θ/2)

Proposed QCG with Open-loop QEC

Vector Diagram

Timing Diagram

Delay

Operation principle
– Delay
– Middle phase generation
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Digitally Controlled Delay Line

DCDL Code

CK_1N (180°)
CK_1P (0°)

CK_2P (θ)
CK_2N (180°+θ)

CK_IN

PI

PI

PI

PI

 
 

 
 

CK_1P (0°)
CK_2P (θ≈90°)

CK_1N (180°)
CK_2N (180°+θ)

CK_1N (180°)
CK_2P (θ)

CK_2N (180°+θ)
CK_1P (0°=360°)

CK_IP (θ/2+θD)

CK_IN (180°+θ/2+θD)

CK_QP (90°+θ/2+θD)

CK_QN (270°+θ/2+θD)

   

Quadrature Phase Error Corrector

Proposed QCG: Circuit Implementation

Circuit implementation
– A digitally controlled delay line (DCDL) generates coarse quadrature phase shift 

(θ≈90°)
– Phase interpolators (PI) produce middle phase
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Proposed QCG: Choice of Phase Interpolator

Commonly used PI
– Voltage-mode PI: “wire-and” inverters
– Current-mode PI: current-mode logic (CML) combiner

Voltage-mode PI

Simple implementation
Compatible to square-wave clocks
Non-linear combining
Sensitive to mismatch and PVT

CK1

CK2

CKOUT

Current-mode PI

Simple implementation
Linear combining
Harmonic issues for square-wave clock, 
more suitable for sinusoidal clock

CK1 CK2

CKOUT

26[5] ISSCC 2018 [6] ISSCC 2021



CML-CMOS 
Converter

Proposed QCG: Choice of Phase Interpolator

VX VCK
Icomb

VCK1

VCK2

Simple implementation
Linear combining
Compatible to square-wave clocks

Commonly used PI
– Voltage-mode PI: “wire-and” inverters
– Current-mode PI: current-mode logic (CML) combiner

Integrating-mode PI (IMPI) [7, ISSCC 2021] 
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θ

Proposed QCG: Choice of Phase Interpolator

Operation principle of integrating-mode PI 
– Converting voltage clocks to current clocks

VCK2

VCK1

VCK2

ICK1

ICK2

DCDL (≈90°)
VCK1

VCK2

θVCK1
IU

IU

-IU

-IU

ICK1

ICK2
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t

θ

ICK2
IU

-IU

Proposed QCG: Integrating-Mode PI

Operation principle of integrating-mode PI
– Applying current on a load capacitor: triangular waveforms generated

t

t

VX2

VCK1

VCK2
ICK2

θ

t

ICK1
IU

-IU

ICK1 VX1
CML-to-CMOS 

Converter

CML-to-CMOS 
Converter
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t

t
1/2

ICK1

ICK2

IU

IU

-IU

-IU

Proposed QCG: Integrating-Mode PI

Operation principle of integrating-mode PI
– Combining the CK1 and CK2 currents

Icomb,Q=(ICK1+ICK2)/21/2

ICK1

ICK2

Icomb,I Icomb,I
IU

-IU t

CK_IP
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t

t

Proposed QCG: Integrating-Mode PI

Operation principle of integrating-mode PI
– Combining the CKB1 and CK2 currents

Icomb,Q
IU

-IU t

Icomb,Q=(ICKB1+ICK2)/21/2

ICKB1

ICK2

IU

IU

-IU

-IU

ICKB1

ICK2

Icomb,Q

1/2

CK_QP
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90°

Icomb,Q
IU

-IU

Icomb,I
IU

-IU t

t

Proposed QCG: Integrating-Mode PI

Operation principal of integrating-mode PI 
– Applying combined current clock on a load capacitor: trapezoidal waveforms generated

VX,I

VX,Q

VCK,I

VCK,Q

Icomb,I

Icomb,Q

90°
CML-to-CMOS 

Converter

CML-to-CMOS 
Converter
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VX1

M1 M2

M3 M4

M5 M6

M7 M8

VB
P

VB
N CK2

VB
P

VB
NCK1

t

VX

IU
-IU t

VX

IU
-IU

t

V

t

V

Proposed QCG: PI Circuit Implementation

Current sources with charging and discharging phase

Circuit implementation of integrating-mode PI
– Charging: PMOS, discharging: NMOS
– C2MOS logic to enable PMOS or NMOS at the pace of input clock

t
IU

-IU

t
IU

-IU
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Proposed QCG: Two-stage QEC

Residual errors might exist after 1-stage open-loop QEC

Additional stages can further reduce the errors
– 2-stage QEC: considering noise and mismatch

CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)

PI-QEC 
Stage#1

PI-QEC 
Stage#2CK_1P  (0°)

CK_2P   (θ)

CK_1N (180°)

CK_2N (θ+180°)

Residual Phase Error
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Proposed QCG: QCG Performance

500-run Monte Carlo simulation is performed to evaluate 2-stage 
QEC performance under mismatch
– Duty cycle: μ=50%, σ=0.32%
– Quadrature phase: μ=90.04°, σ=0.75°

49 49.5 50 50.5 51
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Distribution of Output Duty Cycle Distribution of Output Q-Phase
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QED

0°/180°

θ/θ+180°

DCD

 

CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)

2

 

Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction

Proposed QCG with Open-loop QEC

Is it good enough?

0°/180°

θ/θ+180°

DCDL (≈90°)

2

PI-QEC 
Stage#1

PI-QEC 
Stage#2
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QED

0°/180°
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CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)
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Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction

0°/180°

θ/θ+180°

DCDL (≈90°)

2

PI-QEC 
Stage#1

PI-QEC 
Stage#2

Proposed QCG with Open-loop QEC

Is it good enough?

Two major issues: duty cycle distortion and initial phase error
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Proposed QCG: Duty Cycle Distortion-Concept

Duty cycle distortion → Differential phase ≠ 180° → Generated 
quadrature phase shift ≠ 90°

CK_1P (0°)

CK_1N (180°)

CK_1P (0° or 360°)

CK_2P (θ)
CK_IP (θ/2)

CK_1N (180°)

CK_QP (90°+θ/2)

=T/2

Clock with ideal duty cycle (=50%)
Quadrature phase shift = 90°

CK_1P (0°)

CK_1N (180°-θe)

CK_1P (0° or 360°)

CK_2P (θ)
CK_IP (θ/2)

CK_1N (180°-θe)

CK_QP (90°-θe/2+θ/2)

<T/2

Clock with duty cycle distortion (<50%)
Quadrature phase shift = 90°-θe/2 
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≠90°

Proposed QCG: Duty Cycle Distortion-Circuit

Icomb,I

Icomb,Q

t

t

>T/2

When duty cycle distortion exists in the input clocks:
– Decreasing/increasing trend in the load voltage waveforms → push transistors 

into triode region

VX,I

VX,Q

t

t

t

t

Triode region
Saturation region
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t

 

 

Proposed QCG: AM-PM of the C2C Converter

Icomb,I

Icomb,Q

If initial phase shift θ significantly deviates from 90°:
– Large swing difference of voltage waveforms (AMP1 ≠ AMP2) → skew induced by 

C2C AM-PM characteristics (θD1 ≠ θD2)

VX,I

VX,Q

=90°

C2C
AM-PM
(+tD1)

 

 
C2C

AM-PM
(+tD2)

θ≠90°

Charging > Holding
Swing↑

Charging < Holding
Swing↓

CK_I (+Δθ1)

CK_Q (90°+Δθ2)

t

t

AMP1

AMP2

 

 

C2C: CML-to-CMOS Converter
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QED
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CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)
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Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction

Proposed QCG: Calibration

For optimal QCG performance, initial calibration is necessary
– Duty cycle distortion from the input clocks
– Quadrature delay generated by DCDL

0°/180°

θ/θ+180°

DCDL (≈90°)

2

PI-QEC 
Stage#1

PI-QEC 
Stage#2

CK_REF S2D + DCC
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Proposed QCG: S2D and Duty Cycle Correction

Single-ended duty cycle correction (DCC)
– Pull-down/pull-up current modulating rising/falling transition time

Single-ended-to-differential (S2D) converter
– Cross-coupled inverters for aligning differential edges

Duty cycle ↑

Duty cycle ↓

Clock
Buffer

DCC

Off-Chip 
Ref. Clock

DCC

DCC

To DCDL

S2D

DCC Code
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QED

0°/180°

θ/θ+180°

DCD

 

CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)
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Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction

Proposed QCG: Calibration

Digital automatic calibration scheme:
– Error detection circuits (DCD, QED)
– FSM for performing automatic calibration

0°/180°

θ/θ+180°

DCDL (≈90°)

2

PI-QEC 
Stage#1

PI-QEC 
Stage#2QEDDCD

 

 

FSM for Calibration

CK_REF S2D + DCC
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DCC

DCDL (≈90°)

 

FSM

Auto-Zero
Comparator

Auto-Zero
Comparator

CK

0°
θ°

180°
180+θ°

0°

180°

Duty Cycle Detection

Quadrature Error Detection

Passive 
Phase Mixer

0/1

0/1

CK
CK

Proposed QCG: Digital Calibration

Digital Calibration: error detection circuits + FSM
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DCC

DCDL (≈90°)

 

FSM

Auto-Zero
Comparator

Auto-Zero
Comparator

CK

0°
θ°

180°
180+θ°

0°

180°

Duty Cycle Detection

Quadrature Error Detection

Passive 
Phase Mixer

0/1

0/1

CK
CK

Proposed QCG: Duty Cycle Detection

Duty Cycle Detection

RC low-pass filters for duty cycle detection
– extract DC levels of the P and N clock, representing the duty cycle

Duty Cycle = 50%

Duty Cycle < 50%

Same DC

Different DC

=T/2

<T/2

CKP

CKN

CKP

CKN
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DCC

DCDL (≈90°)

 

FSM

Auto-Zero
Comparator

Auto-Zero
Comparator

CK

0°
θ°

180°
180+θ°
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180°

Duty Cycle Detection

Quadrature Error Detection

Passive 
Phase Mixer

0/1

0/1

CK
CK
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Proposed QCG: Duty Cycle Detection

DCD Transfer Function

RC low-pass filters for duty cycle detection: 20.1 mV/1%, zero-
crossing point std. dev.: 8.2 mV
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DCC

DCDL (≈90°)

 

FSM

Auto-Zero
Comparator

Auto-Zero
Comparator

CK

0°
θ°

180°
180+θ°

0°

180°

Duty Cycle Detection

Quadrature Error Detection

Passive 
Phase Mixer

0/1

0/1

CK
CK

Proposed QCG: Quadrature Error Detection

A passive mixer (passive XOR) converts the quadrature error to DC 
voltage

Schematic of passive phase mixer

0° θ° 180°

VP

180° θ° 0° 180+θ°180+θ°

VN
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Proposed QCG: Quadrature Error Detection

QED Transfer Function

A passive phase mixer (passive XOR) converts the quadrature error 
to DC voltage: 10.1 mV/°, zero crossing point std. dev.: 13.2 mV
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Proposed QCG: Comparator

Comparators slice the detection output to digital “1” and “0”
– 1: above target; 0: below target

Schematic of Comparator
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Proposed QCG: Comparator

Comparator with offset cancellation
– Input offset standard deviation = 400 uVrms ~ 0.02% duty cycle and 0.04°

phase error
Schematic of Comparator
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DCC

DCDL (≈90°)
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Proposed QCG: FSM

FSM without disabling strategy
– Parameters keep being updated near the optimal value, generating spurs

Without disabling strategy
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Periodically updated parameters,
generating spurious tones/jitter
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Proposed QCG: FSM

With disabling strategy

FSM with a pattern-detecting disabling strategy
– Successive detection output are recorded; when it toggles between 1 and 0 for M

times, disable the calibration

Settled parameters,
no spurs issue

M times toggling detected; 
disable the calibration
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Proposed QCG: Design Summary

Proposed QCG system:
– Duty cycle correction (DCC) to calibrate input duty cycle errors
– A digital controlled delay line (DCDL) for generating coarse quadrature phase
– A 2-stage open-loop quadrature error corrector (QEC) for reduce residual errors
– FSM for automatic calibration

QED

0°/180°

θ/θ+180°

DCD

 

CK_REF S2D + DCC

Coarse QCG (DCC+DCDL)
FSM for Calibration

DCDL (≈90°)
CK_IP (0°)

CK_QP (90°)

CK_IN (180°)

CK_QN (270°)

2

 

Fine QEC (PI) 

PI-QEC 
Stage#1

PI-QEC 
Stage#2

 S2D : Single-ended to differential
 DCC : Duty cycle correction
DCDL : Delay line, generating θ≈90°

  PI    : Phase interpolator
QEC : Quadrature error correction
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Measurement Result: Chip Micrograph

The prototype chip is fabricated in TSMC 28-nm CMOS technology

Area: 12100 um2 (with FSM and comparators), 3300 um2 (core area 
excluding digital blocks)

Comp.

FS
M

DCC+DCDL+QEC

0.11 mm

0.
11

 m
m
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Measurement Result: Setup

Measurement setup:
– Phase error testing
– Phase noise testing

Signal Generator
(R&S SMF100A)

DUT

PCB

Oscilloscope
(DSAV334A)

Spectrum Analyzer 
(FSW67)

10-GHz 
Clock

OR

Laptop Control

Hybrid
DUT Output

SUB-20 SPI
Module

Power 
Divider

I. Phase Error
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Measurement Result: Phase Accuracy

Reference-to-I delay (tREF-I) and reference-to-Q delay (tREF-Q) are 
separately measured

Quadrature phase delay tI-Q= tREF-Q - tREF-I

57



Measurement Result: Phase Accuracy

Measured phase error ≤1.8° from 5-10 GHz across 8 chip samples
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Measurement Result: Setup

Measurement setup:
– Phase error testing
– Phase noise testing

Signal Generator
(R&S SMF100A)

DUT

PCB

Oscilloscope
(DSAV334A)

Spectrum Analyzer 
(FSW67)

10-GHz 
Clock

OR

Laptop Control

Hybrid
DUT Output

SUB-20 SPI
Module

Power 
Divider

II. Phase Noise
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Measurement Result: Phase Noise/RMS Jitter

Integrated jitter (10k-1GHz) = 61.09 fs (Q-Phase), 59.56 fs (I-Phase)

Reference jitter = 41.36 fsrms, calculated jitter contribution = 45 fsrms

  T3: I-Phase Clock (59.56fsrms)
  T4: Q-Phase Clock (61.09fsrms)

T2: Ref. Clock (41.36fsrms)
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QCG 
(5.44 mW)

DCC 
(1.67 mW)

DCDL 
(2.61 mW)

Input Buffers 
(0.48 mW)

Total Power: 10.2 mW

Measurement Result: Power Breakdown

Total power consumption: 10.2 mW at 10-GHz operation

Negligible digital power ~ 250 uW during calibration-active region 
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Comparison Table

This work
Columbia 
JSSC’23

[1]

Columbia 
JSSC’22

[2]

Xilinx 
ISSCC’18

[3]

Intel
ESSCIRC’16

[4]

UT Dallas 
CICC’11

[5]

IBM
ISSCC’08

[6]

Architecture Open-loop DLL DLL+IL-QLL IL-QLL Open-loop Open-loop Open-loop

Calibration Digital Auto. 
Calibration Manual Manual Frequency track 

loop
Digital Auto. 
Calibration None None

Number of phases 4 4 8 8 4 8 4

Process 28nm CMOS 65nm CMOS 65nm CMOS 7nm FinFET 28nm CMOS 65nm CMOS 65nm CMOS

Frequency Range 
(GHz) 5-10 3.5~11 5~8 4~16 1~2.6 8~12 0.37~2.5

Power (mW) 10.2
@10 GHz

7.8
@7GHz

15.6
@7GHz

10
@16GHz

4.4
@2GHz

14.8
@10GHz

2.6
@2.5GHz

Power Efficiency 
(mW/GHz) 1.02 1.11 2.23 0.63 2.2 1.48 1.04

Jitter (fs,rms)
62.1

@10 GHz
48.1

@7 GHz
65.2

@7 GHz
80

@16 GHz 37.6 470
@10GHz N/A

Integration Band (Hz) 10k-1G 10k-1G 10k-1G 100k-1G 10k-100M N/A N/A

IQ Error (°) ≤1.8 ≤0.9 ≤0.5 ≤1 ≤5 ≤3.1 ≤5

Area(um2) 12100 12000 21000 N/A 3000 1500 500

Supply (V) 0.9 1.2 1.2 1.2/0.88 1.1 1.1 1

Other open-loop methods
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Conclusion

A QCG featuring DCC, DCDL, open-loop QEC and digital automatic 
calibration is proposed

The design provides an open-loop alternative of generating quadrature 
clocks and correcting residual phase error

The design is verified by simulation and measurement, demonstrating 
a good performance in power, jitter, phase accuracy and operation 
range
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Future Work

Fine phase control from 0 to 360° using quadrature clocks as the 
reference
– de-skewing, alignment, clock & data recovery (CDR)  

Integration with the overall multi-lane transceiver system

Ch #1
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ADC

QCG

C
lo

ck
 D

is
tri
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n

Global Clock 
Generator

RX #1

TX #1PI

Local Clock 
Generator

Ch #N

...

ADC

QCG

RX #N

TX #NPI

Local Clock 
Generator

...

Fine Phase Control Multi-lane Transceiver System
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Publication

Conference
– Shaokang Zhao, Li Wang, and C. Patrick Yue, “Design of A 5–10 GHz Open-Loop 

Quadrature Clock Generator for High-Speed Wireline Systems (under review),” 
in 2025 IEEE 23rd Interregional NEWCAS Conference, 2025.

Journal
– Shaokang Zhao, Li Wang, and C. Patrick Yue, “A 5–10 GHz Quadrature Clock 

Generator with Open-loop Quadrature Error Correction in 28-nm CMOS (under 
review),” IEEE Solid-State Circuits Letters, 2025.
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Proposed QCG: Duty Cycle Self Correction

72
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Proposed QCG: Duty Cycle Self Correction
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Proposed QCG: Digitally Controlled Delay Line

~1.2-ps step (5.4° for 10 GHz), 19.2-ps range
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Proposed QCG: Duty Cycle Correction

Current mirror to modulate pull-up and pull-down strength

Binary-implemented current segments for digital control
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Proposed QCG: Duty Cycle Correction

Simulated DCC performance: ~0.13-% step, ~8.5-% range (TT)

Simulated DCC performance
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≠90°

Proposed QCG: Duty Cycle Distortion-1
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Proposed QCG: Duty Cycle Distortion-2
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Proposed QCG: Current mismatch
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Proposed QCG: Large Current
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Proposed QCG: 

Layout implementation
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