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Applications of 3D Reconstruction

Building Information Modeling (BIM) 3



Motivations for Multi-Agent 3D Reconstruction

> Benefits of applying multi-agent system

1. Increased coverage and completeness : el 5

— Combination of multiple viewpoints ——

2. Efficient data acquisition ey
— Saving time by parallel data collection ::

3. Real-time reconstructed scene update _
- Continuous processing through fleets of agents § e E—



Motivations for Multi-Agent 3D Reconstruction

> In Building Information Modeling (BIM)
& construction site monitoring

1. Increased coverage and completeness
— Accurate documentation and design planning

2. Efficient data acquisition
— Save significant time and cost

3. Real-time reconstructed scene update
— Correct building errors in time
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Conventional 3D Reconstruction

LIiDAR Sensors

Point Cloud

> Range sensors such as LiDAR can generate 3D point clouds
— More expensive
— Struggle in low albedo/dark surface
— Point clouds can be noisy



Conventional 3D Reconstruction

| ;
' N
Motion image iMage i+2 Point Cloud
» Structure from Motion
—Tracks corresponding features across different images

— Estimates 3D structure and camera poses from a set of 2D images
— Sensitive to noise, sparse results, and high processing demands



Prior Works on Camera Pose Estimation
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OpenVSLAM : A versatile visual SLAM framework
Sumikura et al., ACM MM’19 10



Prior Works on Learning-based 3D Reconstruction

Atlas: End-to-end 3D scene reconstruction from posed images
Murez et al., ECCV’'20

> Extract 2D features with 2D convolutional neural network (CNN)
> Backproject 2D features into 3D features using pose data

> Refine accumulated 3D features into a 3D model
11



Motivations for Utilizing 360° cameras

> Commonly used for surveillance purposes

» Advantages of using 360° cameras
— Enhanced Coverage
= Captures full spherical view of the environment

— Simplified Data Collection
= No need to capture from multiple angles

» Challenges and limitations
— Complex 360° camera calibration

— Challenging to integrate with existing deep
learning pipelines for 3D reconstruction

Equirectangular Projection (ERP) 4,



Pose Estimation

Y }

AN A

Nl ML

A A
SIBY

by
|

il

1/
\
Y]

kM

pY)|

n4dl

{

g

4X Playing Speed

3D Point Cloud & Poses

Video from 360° Camera
> Extracting poses from a 360° video using OpenVSLAM

S. Sumikura et al., “OpenVSLAM: A versatile visual SLAM framework,” in Proceedings of the 27th ACM International Conference on Multimedia (pp. 2292-2295), 2019.
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Pose Estimation

Original pose’s direction

}
Mt OpenVSLAM

: Rigid Body
Rotation

, - [

ERP frames Visualized Poses

AVi'W

+
|

Front View

> Obtain poses of every ERP frames from OpenVSLAM

> Transform ERP's poses to 3 extra poses with 90° difference using rigid body rotation

> Each of the transformed pose correspond to a perspective image

14



Equirectangular Projection Conversion

> To convert an ERP to a perspective image

Perspective Image

Equirectangular Projection (ERP)

15



Equirectangular Projection (ERP) Conversion

To convert an ERP to a perspective image
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Equirectangular Projection (ERP)
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Equirectangular Projection (ERP) Conversion

> To convert an ERP to a perspective image

3D Coordinates of
Region of Interest
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Equirectangular Projection (ERP) Conversion

1. Define viewing angle and output perspective image size (H, W)

2. Create 3D coordinates for n ERP pixels z
-n=H-W

3

3. Rotate the 3D coordinates based on offset angles (7, ¢)
—v, =v+sina(k X v)+ (1 —cosa)k X (k X v)

‘'oodessescassceee

" v. = Rv .
~R =1+ (sina)K + (1 — cosa)K? X
0 —k, ky ]
~K=|k, 0 —k Y
—ky Ky 0
= Representation of rotation axis
0O -1 0O
— Example: Unit vector’s representation along z-axis=|1 0 0
O 0 O 18



Equirectangular Projection (ERP) Conversion

4. Convert 3D coordinates to latitude and longitude

N
[
|

latitude = sin™+ —

'r Lattitude 0°

TN
[

longitude = tan 24

X -90°
5. Obtain ERP pixels based on latitude and longitude X Longitude
longitude
XERP = 180 * XERP_center T XERP _center
latitude
YERP = 90 * YERP center T YERP center
6. Remap the ERP pixels to the perspective image Perspectlve Image

19



Equirectangular Projection (ERP) Conversion
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Equirectangular Projection
(ERP)
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ERP Conversion
¥ ¥

4 Perspective Images n :

> Convert an ERP into 4 perspective images

> Treat the 4 views as part of cube-maps, resembling four virtual cameras of field of
view of 90°, pointing in 4 directions

> The final perspective images are compatible with established deep learning pipelines
20



3D Reconstruction Pipeline
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> Input of 3D reconstruction framework (Atlas)
1. Perspective images

2. Perspective images’ poses

21



Qualitative 3D Reconstruction Results

Ground Truth (with texture) Perspective Camera 360° Camera

> 3D semantics comparison




Data Collection Efficiency

Number of Frames vs F-score

0.3

v
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F-score

0.15
—— Perspective Camera

—— 360 Camera
0 500 1000 1500 2000

Number of perspective images

> Finding the least amount of posed images needed for best performance
1. 360° camera: 400 perspective images > 100 ERP
2. Perspective Camera: 400 perspective images

> Total images captured
1. 360° camera: 500 ERP
2. Perspective Camera: 1000 perspective images 23



Quantitative 3D Reconstruction Results

Input for 3D Reconstruction Estimated frames per m’
F-score (%) needed to attain best

Image Data Source Pose Data Source performance

360° camera OpenVSLAM

Perspective camera OpenVSLAM 22.5 13.36

» 360° camera vs Perspective camera
— 32% more accurate than perspective camera More Accurate More Efficient
-4 times more efficient in data collection

> Test environment size: ~30m?
24



» Background and Motivations

> Leveraging 360° Cameras in 3D Reconstruction

> Optimizing Communication in Multi-Agent Path Finding

> Summary and Conclusion
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Optimizing Communication in Multi-Agent Path Finding

> The Rise of Autonomous Systems:
— Surveillance or monitoring robots
— Autonomous vehicles

— Warehouse robots

> The robots will soon operate in large nhumbers

—

> Scalable Multi-agent Path Finding (MAPF) relies on decentralized
decision-making

> In a partially observable environment, agents need communication to
— Coordinate actions
— Share information

26



Problem Formulation of Multi-Agent Path Finding

> Given a graph ¢ = (V,E), with start and destination vertices as {sy,...,s,} €V

and {d{,...,d,} €V
—The location change v —» v’ caused by an agent’s movement corresponds to an edge

in the graph (i.e., v>v' €E)
Denote a sequence of actions taken by agent i from the beginning to time t
as m; ={aq,..,a;}
> The MAPF solution n = {m4, ..., 1, } comprises all actions from n agents

» Forbidden conflicts
—Vertex collision: agent i and j stays on the same location simultaneously [;(t) = [;(t)

— Edge collision: agent i and j try to move on the same edge (v -» v' € E)

27

R. Stern et al., "Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,” in Symposium on Combinatorial Search, pp. 151-159, 2019.



Prior Works on MAPF via Reinforcement Learning
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Fig. 3. The neural network consists of 7 convolutional layers interleaved with maxpooling layers, followed by an LSTM.

PRIMAL, Sartoretti et al., RA-L'19

> Limitations
—Heavily rely on expert algorithms
-~ No communication involved

grid world environment
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MAPPER, Liu et al., IROS'20
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Selective Commmunication

> Selective Communication
1. Gather the observation o; from agent i
2. Create an action d@; based on o;

3. Create modified observations {o; _;},cy, for
each neighbour of agent i

4. Create temporary actions d; _, based on
{0i —1}ien;

5. Create a communication scope
C; = {lla # a; _i}ien,, (I.€., @; # d; ;)

I compare

Temporary actions ai_j a; —x a; —p



Binary Mask of Communication Scope

Observations from all agents
> i affects j & j does not affect i l
— binary mask = E (1)]
Observation Encoder y
> i & jdoes not affect each other
Selective
: _]1 0 .
— binary mask = 0 1 Communication
Module
» i & j affect each other Communication ]
-
Module

Bi k
— binary mask = [i ﬂ inary mas

> Masked information = information - binary mask

31



Communication Module

Calculating attention scores across all agents

— Attention score u* = softmax

r Observations from all agents

_W331 Wige)T W331 (Wige)T]
Jdx Jdx

T
h h h h
Woex(Wiger)  Wge(Witen)T

Jax

Jax

— e : observation embeddings matrix of all agents

Masked attention score

= attention scores - binary mask

Embeddings from communication module

— Attention weight w" = " Wlte
-é=f, [concat[z w? vh e H”

- f,: fully connected layer

Hidden
observation

states of all ™
agents

Observation Encoder *
Selective
l e Communication
Module
Communication J
-
Module _
Binary mask
;e
GRU

;

Q-Network - —— Actjons for all agent:
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Optimizing Field-of-View

. g, onmun e
eé@
/

Sl -

e e R

> Growing trend to use attention mechanism to explain relationship and
share information between agents

> A larger Field-of-View (FOV) might have more redundant information
33



Motivation of Studying Field-of-View

> Field-of-View (FOV) represents

— Perception range
= Example: LiDAR sensors in autonomous robots

— Communication scope

> Importance of studying FOV
— Balancing performance and computational efficiency

— Enhancing real-world deployment of multi-agent systems under resource
constraints

> Current research landscape
— Often neglected in reinforcement learning based MAPF studies
—Many research studies use the same FOV (9 x 9) without extensive exploration

34



» Curriculum training
— 5 models with FOV: {3 x3,5%x5,7%x7,9%x9,11 x 11}

— Starts with 2 agents and map size of 10 x 10 Updatgrie;gfireisences'
—Up to 20 agents and max map size of 40 x 40 L earmer ™| Replay Buffer
-
» Testing | Sample experiences
Int t with
~FOV: {3%x3,5x5,7%x7,9%9,11 x 11} Ugjfat;;“tgfse' Tgnsrfcncnr\:\vtlent
& updat i
— Number of agents: {4,8,16,32} ‘ Actor e
— Maps: {40 x 40,80 x 80} ,

— Max. steps allowed: 256
Ape-X framework

» Trained on HKUST HPC3 with Ape-X framework Horgan et al., ICLR’18
—2 RTX 6000 GPUs and 16 Intel Xeon Gold 6230 CPUs
35



MAPF Performance

) . Success Rate versus Number of Agents in 40x40 Map
Metrics B — -
— Success rate s 2]
= Percentage of agents reaching the destination 2 0]
within the maximum number of steps 2 01 o 3
O 401 5X5
—Average steps 5 01 a7
20 4 —— 9x9
= Steps number needed to finish MAPF tasks 10 | — 11x11
across all agents e : 5 ps
Number of agents
> The 7 X 7 FOV Avg. Steps versus Number of Agents in 40x40 Map

250 - —— 3x3

5x5
2009 —m— Tx7
—— 9x9
150 4 —— 11x11

256)

— Outperforms the baseline in both success rate
and average steps

> The 3 x3 FOV

—With the least amount of information
— Comparable performance with the baseline 0

Avg. Steps (max
=
=

T T T T
4 8 16 32
Number of agents



Communication Overhead

Number of Communication versus Number of Agents in 40x40 Map Success Rate versus Number of Agents in 40x40 Map
600
c j
= o -%\-
-
1] —_—
o ®
= <
3 400 - .
£ % % \_.
£ —
o ")
) o —+— 3x3
b 4
© 200 o 8 X3
T A —m— Jx7
£
3 70 4 = 11x11
= 0 - T T T T
4 8 16 32 4 8 16 32

Number of agents Number of agents

> Smallest FOV (3 x 3) reduced communication by 28.9% with only 1.7%
decrease in average success rate compared to baseline (9 x 9)

> The 3 x 3 FOV is restricted in communication capacity
— Reducing communication overheads and redundant information received
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Computation Efficiency and Performance

Network Step Time versus Number of Agents in 40x40 Map

> Analyzing computation time | —
— Proportional to FOV size 2 1 e Fova —x
— Affected by communication scope & el
observation size < 4 //
o 3
i . . : 2 2] R
> All computation time is normalized by the 2. /
minimum time " : : ns
Number of Agents
o Eliminate hardware differences Normalised Success Rate versus Number of Agents of in 40x40 Map
~i.e., 3 x 3 always have normalized time of 1 '] rovaes »
g0l ™ FOVTx7
—— FOV9x9

70
—— FOV11x11

> Normalized success rate
—Take computation time into consideration

60
50
40 -
30
20
10 - *
0

—3 x 3 is the most efficient 3 8 16 2

Number of Agents

!

—r' ==, r = success rate, t = normalized time

o~ =

Normalised Success Rate (%)



» Background and Motivations

> Leveraging 360° Cameras in 3D Reconstruction
» Optimizing Communication in Multi-Agent Path Finding

> Summary and Conclusion

39



Summary and Conclusion
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1. A 3D reconstruction pipeline for 360° cameras

2. A communication-based MAPF framework and a FOV study



> Explore the following approaches
— Data fusion for 3D reconstruction
= Combining measurements from LiDAR and Inertial sensors
— 3D reconstruction algorithms
= 3D Gaussian Splatting, 3D-aware diffusion model, NeRF, etc

— Evaluation on simulation platform
= Test our MAPF algorithm on simulation platform such as Gazebo and Issac Sim

41
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Reinforcement Learning

agent environment

: cti
function actions

reinforcement

learnin g rewards

algorithm

observations

. Initialize environment and policy
. Define reward structure

. Interact with environment

A W N =

. Update the policy based on the reward 45



Reinforcement Learning

> Sampling experiences

— For each agent: interact with environment and store the transition in replay
buffer

—Transition = [state, action, rewards, next state]

> Training
1. Sample batches from replay buffer

2. Target value = rewards + discount factor * network(next state)
= Assuming higher accuracy

3. Loss = MSE(target value, network(state))
= Backpropagate the loss and update network

46



Dueling Deep Q-Network

Observation Encoder
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> Output of the final GRU = input of 2 fully connected layers
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GRU Design
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FOV Study on Value-Decomposition Networks

(VDN)

|E‘ iargmal Q, | 5, = agmax O, | (VDN) Success Rate versus Number of Agents in 40x40 Map
Qi(o,.0,), (a,.,a,)) 1007 —— 3x3
£ 7 90 - X
il e o
: ﬂ1{u1.aﬂ Q,(0,a,) g O —— 9x9
110 1 | | | | o Eg: * —e— 11x11
v. | | ADv, v, ADV, 2 ] . i A
T 1 T &
O 309 x 8
LSTM + ReLu LSTM + ReLu | " 20 § X
PN £ 10 - +
0 T T T T
Linear + Relu | | Linear + Relu 4 8 16 32
flﬁlx LI/F Number of Agents
Obs, Environment Obs,,

> Similarly, smaller FOV shows better performance in VDN
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Communication Module (All Agents)

» Calculating attention score across all agents

-u"

wk e-(whe
—softmax[ < ( K)

—e : observation embeddings of all agents Hidden

observation

" size = batch size X no.of agents X no.of agents X states of all

observation embedding size agents

> Embeddings from communication module
-é=f, [concat[z u* Whe,vh € H]]

—f,+ fully connected layer

Z.Ma et al.,

r Observations from all agents

e
Observation Encoder *
Selective
l e Communication
Module
Communication J
=
Module )
Binary mask
J, 8
GRU

Q-Network —— Actions for all agents

53

"Distributed Heuristic Multi-Agent Path Finding with Communication,” IEEE International Conference on Robotics and Automation (ICRA), pp. 8699-8705, 2021.



Why Selective Communication

Map size 40x40, obstacle density=0.3 Map size 80x80, obstacle density=0.3
1.0 1.0
08 0.8
2 2
g P 06
0 0w
fios %
8 8
> 504
n n
0.4
=*=NHECE —*— DCC
—=— DHC 02 = DHC

4 8 16 32 64 4 8 16 32 64 128
Agents Agents

Success rate comparison between DCC, DHC and PRIMAL
> Major difference between DCC & DHC
— DCC communicate as needed
— DHC's performance drops drastically when congestion happens

> DHC: broadcast communication
54

Z. Ma et al., “Learning Selective Communication for Multi-Agent Path Finding,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 2, pp. 1455-1462, 2022.



From Discrete MAPF to Real World Deployment

HAH T H

Warehouse Discretized Map

= gii ! w

=
i

& = - 3
| '__t iEAGARAGAENENE DD DD

> Digitalize the real world
— Use the MAPF RL algorithm as a global planner

— Use algorithms such as TEB planner as a local planner and navigate through
complex environment 55
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ORB Feature Extractor

» Oriented FAST and Rotated BRIEF (ORB) feature extractor

> Features from Accelerated and Segments Test (FAST) key point detector

57



Voxelization: Truncated Signed Distance

Function/Field (TSDF)

> Consider a bird-eye view of a surface

— SDF: Each voxel center’s signed distance
to its nearest object surface

= sdf;(x) = depth; (pic(x)) — cam,(x)
= Surface’s SDF value is O

—TSDF: Truncation into [-1, 1]
= better occupancy representation and storage

D -
. 1] = A 0., = A N\ -
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Other 3D Reconstruction Techniques
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Disparity Map
(Deep Learning Based Architectures)

Minimum number of 3D |

raialitan e ‘ No 3D convolution used

3D convolution used

SMCNN : Stereo Matching CNN, GCNet: Geometry and Context Net, PSMNet:Pyramid Stereo Matching Network,

DispNet: DisparityNet, CRL: Cascade Residual Learning, GANet: Guided Aggregation Net,

HSMNet: Hierarchical Stereo Matching, GwcNet: Group-wise Correlation StereoNet, AANet: Adaptive Aggregation Network
LEAStereo: Learning Effective Architecture Stereo, STTR: Stereo Transformer, BGNet:Bilateral Grid Network

PASMNet: Parallax-attention stereo matching network, ACVNet: Attention Concatenation Volume

CreStereo: Cascade Recurrent Network, HitNet: Hierarchical Iterative Tile Refinement Network
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Other VSLAM Techniques

TRACKING

Initial Pose Estimation

Feature-Based Direct e wack [ New KeyFrame
N ] i ' Frame ORB from last frame or |}, \caiMap ||  Decision
Input Input | Relocalisation
Images ) Images V I
=0 ] Map Initialization MAP KeyFrame
F
Extract & Match . PLACE KeyFrame || ©
Features Pl l RECOGNITION Miciiion g
(SIFT/SURF/ ...) A I Recent ;
e e , S— Points || >
N L. p Covisibility M?;‘:,“ing )
abstract image to feature observations keep full images (no abstraction) Recognition Graph %
Track: Al Track: a—_ a1
min. reprojection error| 45 <. min. photometric error oe
(point distances) ) g (intensity differences)
7 Al 7 N Loop Correction Loop Detection LocalBA
\! s t‘.' 7 - ! .:. s e Local
- Map: gl Map: Om"“'.“l Loop Compute || Candidates KeyFrames
est. feature-parameters == JE; J'l - est. per-pixel depth Essentia Fusion Sim3 Detection | T* Culling
(3D points / normals) —55 75— | | (semi-dense depth map)| Graph
LOOP CLOSING

> Indirect vs direct SLAM ORB-SLAM?2

> Alternative: ORB-SLAM2
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Performance metric: F-score

Precision e Recall

Of EOf:u | m—u— =2
all positive predictions, i all real positive cases, . e
how many are really positive? TP + F P i how many are predicted positive? TP+FN precision - recall TP
Real Class Real Class precision _I_ recall TP _I_ (FP _|_ FN)
Positive Negative Positive Negative
[ TP = number of true positives
Positive Positive TP FP
TP F P FP = number of false positives
Predicted Class Predicted Class
FN = number of false negatives
Negative FN TN Negative F N TN

> Widely used metric in classification tasks

> Measuring a model’s predictive performance
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Rodrigues’ Rotation

[(k x V), kv, — kv, | 0 —k, k,
(kxv)y | = | kvy —kgv, | = | k. 0 —k,

| (k X V), | | kyvy — kyvs -k, k 0
k x v=Kyv, k x (k xv)=K(Kv)=K?v.

R =1+ (sinf)K + (1 — cos ) K>

Viot = V4 (1 —cosB)k x (k x v) + sin(6)k x v,

K =

V=V+y
v, = k(icv)

v = — kx(kxv) =v - k(kv)
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enerating Ground Truth Models

Ground truth data obtained from a LiDAR sensor




Qualitative 3D Reconstruction Results

Ground Truth Ground Truth Perspective Camera 360 Camera
(with texture) (without texture)

> 3D model comparison
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> Behind the Robot: HITT's Construction Site Monitoring Husky UGV - Clearpath Robotics:
https://clearpathrobotics.com/blog/2021/10/behind-the-robot-hitts-construction-site-monitoring-husky-

ugv/

> Digital Giza: Tomb of Queen Meresankh Il (G 7530-7540):
http://giza.fas.harvard.edu/giza3d/?mode=matterport&m=d42fuVA21To
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More on Future Works

> Applications in multi-agent 3D reconstruction
— Multiple UAVs doing 3D recon: https://www.intechopen.com/chapters/68371
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