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Applications of 3D Reconstruction

Autonomous Driving

Building Information Modeling (BIM)

Virtual Reality (VR)



Benefits of applying multi-agent system

1. Increased coverage and completeness
– Combination of multiple viewpoints

2. Efficient data acquisition
– Saving time by parallel data collection

3. Real-time reconstructed scene update
– Continuous processing through fleets of agents

Motivations for Multi-Agent 3D Reconstruction
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Motivations for Multi-Agent 3D Reconstruction

1. Increased coverage and completeness
→ Accurate documentation and design planning

2. Efficient data acquisition
→ Save significant time and cost

3. Real-time reconstructed scene update
→ Correct building errors in time

In Building Information Modeling (BIM) 
& construction site monitoring
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Thesis Organization and Contribution

Optimizing Communication in 
Multi-Agent Path Finding

Leveraging 360°Cameras 
in 3D Reconstruction
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Conventional 3D Reconstruction

Range sensors such as LiDAR can generate 3D point clouds
– More expensive
– Struggle in low albedo/dark surface
– Point clouds can be noisy

Point Cloud
LiDAR Sensors



9

Conventional 3D Reconstruction

Structure from Motion 
– Tracks corresponding features across different images
– Estimates 3D structure and camera poses from a set of 2D images
– Sensitive to noise, sparse results, and high processing demands

Point CloudMotion

image 𝑖𝑖

image 𝑖𝑖 + 1 image 𝑖𝑖 + 2

image 𝑖𝑖 + 3

3D Structure
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Prior Works on Camera Pose Estimation

OpenVSLAM : A versatile visual SLAM framework 
Sumikura et al., ACM MM’19

Using Oriented FAST and 
Rotated BRIEF (ORB) 
feature extractor



11

Prior Works on Learning-based 3D Reconstruction

Extract 2D features with 2D convolutional neural network (CNN)

Backproject 2D features into 3D features using pose data

Refine accumulated 3D features into a 3D model

Atlas: End-to-end 3D scene reconstruction from posed images 
Murez et al., ECCV’20

Posed 
Images
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Motivations for Utilizing 360° cameras

Commonly used for surveillance purposes

Advantages of using 360° cameras
– Enhanced Coverage
 Captures full spherical view of the environment

– Simplified Data Collection
 No need to capture from multiple angles

Challenges and limitations
– Complex 360° camera calibration
– Challenging to integrate with existing deep 

learning pipelines for 3D reconstruction

360° camera tested: Ricoh Theta V

Equirectangular Projection (ERP)
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Pose Estimation

Extracting poses from a 360° video using OpenVSLAM

S. Sumikura et al., “OpenVSLAM: A versatile visual SLAM framework,” in Proceedings of the 27th ACM International Conference on Multimedia (pp. 2292-2295), 2019.

3D Point Cloud & Poses Video from 360°Camera

4X Playing Speed
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Pose Estimation

Obtain poses of every ERP frames from OpenVSLAM

Transform ERP's poses to 3 extra poses with 90° difference using rigid body rotation 

Each of the transformed pose correspond to a perspective image

ERP frames

OpenVSLAM
+ …

Visualized Poses

Rigid Body 
Rotation

Front View

Original pose’s direction
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Equirectangular Projection Conversion

To convert an ERP to a perspective image

Equirectangular Projection (ERP)

Perspective Image
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Equirectangular Projection (ERP) Conversion

To convert an ERP to a perspective image

Equirectangular Projection (ERP)

Perspective Image
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Equirectangular Projection (ERP) Conversion

To convert an ERP to a perspective image

Equirectangular Projection (ERP)

Perspective Image
3D Coordinates of 
Region of Interest
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Equirectangular Projection (ERP) Conversion

x

y

z

1. Define viewing angle and output perspective image size (𝐻𝐻,𝑊𝑊)

2. Create 3D coordinates for 𝑛𝑛 ERP pixels 

– 𝑛𝑛 = 𝐻𝐻 � 𝑊𝑊

3. Rotate the 3D coordinates based on offset angles (𝜃𝜃,𝜑𝜑)
– 𝑣𝑣𝑟𝑟 = 𝑣𝑣+ sin𝛼𝛼 𝑘𝑘 × 𝑣𝑣 + 1 − cos𝛼𝛼 𝑘𝑘 × (𝑘𝑘 × 𝑣𝑣)
 𝑣𝑣𝑟𝑟 = 𝑅𝑅𝑅𝑅

– 𝑅𝑅 = 𝐼𝐼 + sin𝛼𝛼 𝐾𝐾 + 1 − cos𝛼𝛼 𝐾𝐾2

– 𝐾𝐾 =
0 −𝑘𝑘𝑧𝑧 𝑘𝑘𝑦𝑦
𝑘𝑘𝑧𝑧 0 −𝑘𝑘𝑥𝑥
−𝑘𝑘𝑦𝑦 𝑘𝑘𝑥𝑥 0

 Representation of rotation axis

– Example: Unit vector’s representation along z-axis =
0 −1 0
1 0 0
0 0 0
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Equirectangular Projection (ERP) Conversion

4. Convert 3D coordinates to latitude and longitude

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = sin−1
𝑧𝑧
𝑟𝑟

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = tan
𝑦𝑦
𝑥𝑥

5. Obtain ERP pixels based on latitude and longitude

𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

180
� 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

90
� 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

6. Remap the ERP pixels to the perspective image Perspective Image
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Equirectangular Projection (ERP) Conversion

Convert an ERP into 4 perspective images

Treat the 4 views as part of cube-maps, resembling four virtual cameras of field of 
view of 90°, pointing in 4 directions

The final perspective images are compatible with established deep learning pipelines

Equirectangular Projection 
(ERP)

4 Perspective Images
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Poses

3D Reconstruction Pipeline

Input of 3D reconstruction framework (Atlas)
1. Perspective images

2. Perspective images’ posesPose 
Estimation

+ …

Perspective Images

ERP Conversion

+ …

Posed 
Images

+ …
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3D semantics comparison

Ground Truth (with texture)

Qualitative 3D Reconstruction Results

°360° CameraPerspective Camera
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Data Collection Efficiency

Finding the least amount of posed images needed for best performance
1. 360° camera: 400 perspective images → 100 ERP

2. Perspective Camera: 400 perspective images

Total images captured
1. 360° camera: 500 ERP

2. Perspective Camera: 1000 perspective images

peak

Number of perspective images
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Quantitative 3D Reconstruction Results

Input for 3D Reconstruction
F-score (%)

Estimated frames per 𝑚𝑚2

needed to attain best 
performanceImage Data Source Pose Data Source

360° camera OpenVSLAM 29.7 3.34

Perspective camera OpenVSLAM 22.5 13.36

360° camera vs Perspective camera
– 32% more accurate than perspective camera
– 4 times more efficient in data collection

Test environment size: ~30𝑚𝑚2

More Accurate More Efficient
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Optimizing Communication in Multi-Agent Path Finding

The Rise of Autonomous Systems:
– Surveillance or monitoring robots
– Autonomous vehicles
– Warehouse robots

The robots will soon operate in large numbers

Scalable Multi-agent Path Finding (MAPF) relies on decentralized 
decision-making

In a partially observable environment, agents need communication to
– Coordinate actions
– Share information
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Problem Formulation of Multi-Agent Path Finding

Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , with start and destination vertices as 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 ∈ 𝑉𝑉
and 𝑑𝑑1, … ,𝑑𝑑𝑛𝑛 ∈ 𝑉𝑉
– The location change 𝑣𝑣 → 𝑣𝑣′ caused by an agent’s movement corresponds to an edge 

in the graph (i.e., 𝑣𝑣 → 𝑣𝑣′ ∈ 𝐸𝐸)

Denote a sequence of actions taken by agent 𝑖𝑖 from the beginning to time 𝑡𝑡
as 𝜋𝜋𝑖𝑖 = 𝑎𝑎1, … ,𝑎𝑎𝑡𝑡

The MAPF solution 𝜋𝜋 = 𝜋𝜋1, … ,𝜋𝜋𝑛𝑛 comprises all actions from 𝑛𝑛 agents 

Forbidden conflicts
– Vertex collision: agent 𝑖𝑖 and 𝑗𝑗 stays on the same location simultaneously 𝑙𝑙𝑖𝑖 𝑡𝑡 = 𝑙𝑙𝑗𝑗(𝑡𝑡)

– Edge collision: agent 𝑖𝑖 and 𝑗𝑗 try to move on the same edge (𝑣𝑣 → 𝑣𝑣′ ∈ 𝐸𝐸)

R. Stern et al., ”Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,” in Symposium on Combinatorial Search, pp. 151–159, 2019. 
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Prior Works on MAPF via Reinforcement Learning

Limitations
– Heavily rely on expert algorithms
– No communication involved

MAPPER, Liu et al., IROS’20PRIMAL, Sartoretti et al., RA-L’19
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Selective Communication

Selective Communication
1. Gather the observation 𝑜𝑜𝑖𝑖 from agent 𝑖𝑖
2. Create an action �𝑎𝑎𝑖𝑖 based on 𝑜𝑜𝑖𝑖
3. Create modified observations {𝑜𝑜𝑖𝑖,−𝑙𝑙}𝑙𝑙∈𝑁𝑁𝑖𝑖 for 

each neighbour of agent 𝑖𝑖
4. Create temporary actions �𝑎𝑎𝑖𝑖,−𝑙𝑙 based on

{𝑜𝑜𝑖𝑖,−𝑙𝑙}𝑙𝑙∈𝑁𝑁𝑖𝑖
5. Create a communication scope

ℂ𝑖𝑖 = {𝑙𝑙| �𝑎𝑎 ≠ �𝑎𝑎𝑖𝑖,−𝑙𝑙}𝑙𝑙∈ℕ𝑖𝑖, (i.e., �𝑎𝑎𝑖𝑖 ≠ �𝑎𝑎𝑖𝑖,−𝑙𝑙)

Temporary actions         �𝑎𝑎𝑖𝑖,−𝑗𝑗 �𝑎𝑎𝑖𝑖,−𝑘𝑘 �𝑎𝑎𝑖𝑖,−𝑝𝑝

Original
action �𝑎𝑎𝑖𝑖

𝑜𝑜𝑖𝑖 𝑜𝑜𝑖𝑖,−𝑗𝑗 𝑜𝑜𝑖𝑖,−𝑘𝑘 𝑜𝑜𝑖𝑖,−𝑝𝑝

compare
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Binary Mask of Communication Scope

𝑖𝑖 affects 𝑗𝑗 & 𝑗𝑗 does not affect 𝑖𝑖

– binary mask = 1 𝟎𝟎
𝟏𝟏 1

𝑖𝑖 & 𝑗𝑗 does not affect each other

– binary mask = 1 𝟎𝟎
𝟎𝟎 1

𝑖𝑖 & 𝑗𝑗 affect each other

– binary mask = 1 𝟏𝟏
𝟏𝟏 1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Observations from all agents

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦
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Hidden 
observation 
states of all 
agents

Communication Module

Calculating attention scores across all agents

– Attention score 𝜇𝜇ℎ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑊𝑊𝑄𝑄
ℎ𝑒𝑒1(𝑊𝑊𝐾𝐾

ℎ𝑒𝑒1)𝑇𝑇

𝑑𝑑𝐾𝐾

𝑊𝑊𝑄𝑄
ℎ𝑒𝑒1(𝑊𝑊𝐾𝐾

ℎ𝑒𝑒2)𝑇𝑇

𝑑𝑑𝐾𝐾

𝑊𝑊𝑄𝑄
ℎ𝑒𝑒2 𝑊𝑊𝐾𝐾

ℎ𝑒𝑒1
𝑇𝑇

𝑑𝑑𝐾𝐾

𝑊𝑊𝑄𝑄
ℎ𝑒𝑒2(𝑊𝑊𝐾𝐾

ℎ𝑒𝑒2)𝑇𝑇

𝑑𝑑𝐾𝐾

– 𝑒𝑒 : observation embeddings matrix of all agents

Masked attention score
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Embeddings from communication module
– Attention weight 𝑤𝑤ℎ = 𝜇𝜇ℎ 𝑊𝑊𝑉𝑉

ℎ𝑒𝑒

– 𝑒̂𝑒 = 𝑓𝑓𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑𝑤𝑤ℎ ,∀ℎ ∈ 𝐻𝐻

– 𝑓𝑓𝑜𝑜: fully connected layer

𝑒̂𝑒
Binary mask

Actions for all agents

Observations from all agents

𝑒𝑒
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Optimizing Field-of-View

Growing trend to use attention mechanism to explain relationship and 
share information between agents

A larger Field-of-View (FOV) might have more redundant information
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Motivation of Studying Field-of-View

Field-of-View (FOV) represents 
– Perception range
 Example: LiDAR sensors in autonomous robots

– Communication scope

Importance of studying FOV
– Balancing performance and computational efficiency
– Enhancing real-world deployment of multi-agent systems under resource 

constraints

Current research landscape
– Often neglected in reinforcement learning based MAPF studies
– Many research studies use the same FOV (𝟗𝟗 × 𝟗𝟗) without extensive exploration
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Experiment

Curriculum training
– 5 models with FOV: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11
– Starts with 2 agents and map size of 10 × 10
– Up to 20 agents and max map size of 40 × 40

Testing
– FOV: 3 × 3, 5 × 5, 7 × 7,𝟗𝟗 × 𝟗𝟗, 11 × 11
– Number of agents: 4, 8, 16, 32
– Maps: 40 × 40, 80 × 80
– Max. steps allowed: 256

Trained on HKUST HPC3 with Ape-X framework
– 2 RTX 6000 GPUs and 16 Intel Xeon Gold 6230 CPUs

Ape-X framework
Horgan et al., ICLR’18

Update experiences’ 
priorities

Sample experiences

Update model
parameters

Interact with 
environment

& update experiences
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MAPF Performance

Metrics
– Success rate
 Percentage of agents reaching the destination 

within the maximum number of steps

– Average steps
 Steps number needed to finish MAPF tasks 

across all agents

The 7 × 7 FOV 
– Outperforms the baseline in both success rate 

and average steps

The 3 × 3 FOV
– With the least amount of information
– Comparable performance with the baseline



37

Communication Overhead

Smallest FOV (3 × 3) reduced communication by 28.9% with only 1.7% 
decrease in average success rate compared to baseline (9 × 9)

The 3 × 3 FOV is restricted in communication capacity
– Reducing communication overheads and redundant information received
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Computation Efficiency and Performance

Analyzing computation time
– Proportional to FOV size
– Affected by communication scope & 

observation size

All computation time is normalized by the 
minimum time
– Eliminate hardware differences
– i.e., 3 × 3 always have normalized time of 1

Normalized success rate
– Take computation time into consideration

– 𝑟𝑟′ = 𝑟𝑟
𝑡̅𝑡

, 𝑟𝑟 = success rate, ̅𝑡𝑡 = normalized time

– 3 × 3 is the most efficient
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1.A 3D reconstruction pipeline for 360°cameras

2.A communication-based MAPF framework and a FOV study

Summary and Conclusion
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Future Works

Explore the following approaches
– Data fusion for 3D reconstruction
 Combining measurements from LiDAR and Inertial sensors

– 3D reconstruction algorithms
 3D Gaussian Splatting, 3D-aware diffusion model, NeRF, etc

– Evaluation on simulation platform
 Test our MAPF algorithm on simulation platform such as Gazebo and Issac Sim
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Reinforcement Learning

1. Initialize environment and policy

2. Define reward structure

3. Interact with environment

4. Update the policy based on the reward
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Reinforcement Learning

Sampling experiences
– For each agent: interact with environment and store the transition in replay 

buffer
– Transition = [state, action, rewards, next state] 

Training
1. Sample batches from replay buffer
2. Target value = rewards + discount factor * network(next state)
 Assuming higher accuracy

3. Loss = MSE(target value, network(state))
 Backpropagate the loss and update network
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Dueling Deep Q-Network

Output of the final GRU = input of 2 fully connected layers
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GRU Design
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FOV Study on Value-Decomposition Networks 
(VDN)

Similarly, smaller FOV shows better performance in VDN
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Communication Module (All Agents)

Calculating attention score across all agents

– 𝜇𝜇ℎ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑊𝑊𝑄𝑄

ℎ 𝑒𝑒� 𝑊𝑊𝐾𝐾
ℎ𝑒𝑒

𝑇𝑇

𝑑𝑑𝐾𝐾

– 𝑒𝑒 : observation embeddings of all agents
 size = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ×

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Embeddings from communication module

– 𝑒̂𝑒 = 𝑓𝑓𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑𝜇𝜇ℎ 𝑊𝑊𝑉𝑉
ℎ𝑒𝑒,∀ℎ ∈ 𝐻𝐻

– 𝑓𝑓𝑜𝑜: fully connected layer

Z. Ma et al., ”Distributed Heuristic Multi-Agent Path Finding with Communication,” IEEE International Conference on Robotics and Automation (ICRA), pp. 8699-8705, 2021.

𝑒𝑒

𝑒𝑒

𝑒̂𝑒

Hidden 
observation 
states of all 
agents

Binary mask

Actions for all agents

Observations from all agents
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Why Selective Communication

Major difference between DCC & DHC
– DCC communicate as needed
– DHC’s performance drops drastically when congestion happens

DHC: broadcast communication
Z. Ma et al., “Learning Selective Communication for Multi-Agent Path Finding,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 2, pp. 1455-1462, 2022. 

Success rate comparison between DCC, DHC and PRIMAL
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From Discrete MAPF to Real World Deployment

Digitalize the real world
– Use the MAPF RL algorithm as a global planner
– Use algorithms such as TEB planner as a local planner and navigate through 

complex environment

Warehouse Discretized Map
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ORB Feature Extractor

Oriented FAST and Rotated BRIEF (ORB) feature extractor

Features from Accelerated and Segments Test (FAST) key point detector

Binary robust independent elementary feature (BRIEF) descriptor
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Voxelization: Truncated Signed Distance 
Function/Field (TSDF)

Consider a bird-eye view of a surface
– SDF: Each voxel center’s signed distance 

to its nearest object surface
 𝑠𝑠𝑠𝑠𝑓𝑓𝑖𝑖 x = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 x − 𝑐𝑐𝑐𝑐𝑚𝑚𝑧𝑧 x

 Surface’s SDF value is 0

– TSDF: Truncation into [-1, 1]
 better occupancy representation and storage

Distance to 
the Sensor

Negative SDF
from Surface
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Other 3D Reconstruction Techniques

NeuralRecon, Sun et al., CVPR’21

Neural RGB-D, Azinović et al., CVPR’22



60

Other VSLAM Techniques

Indirect vs direct SLAM

Alternative: ORB-SLAM2

ORB-SLAM2
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Performance metric: F-score

Widely used metric in classification tasks

Measuring a model’s predictive performance
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Rodrigues’ Rotation
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Generating Ground Truth Models

Ground truth data obtained from a LiDAR sensor
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Qualitative 3D Reconstruction Results

3D model comparison
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Behind the Robot: HITT's Construction Site Monitoring Husky UGV - Clearpath Robotics: 
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ugv/

Digital Giza: Tomb of Queen Meresankh III (G 7530-7540): 
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More on Future Works

Applications in multi-agent 3D reconstruction
– Multiple UAVs doing 3D recon: https://www.intechopen.com/chapters/68371

https://www.intechopen.com/chapters/68371
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