

Leveraging 360° Cameras and Coordinated Multi-Agent Systems for Scalable Indoor 3D Reconstruction

Hoi Chuen Cheng

Thesis Supervisor: Prof. Chik Patrick Yue

28th February 2024

Optical Wireless Lab (OWL) & Integrated Circuit Design Center (ICDC)

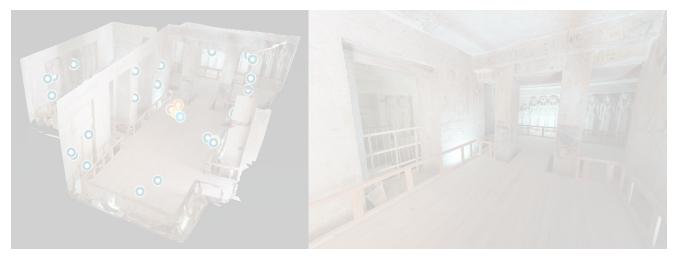
Department of Electronic and Computer Engineering (ECE)

The Hong Kong University of Science and Technology (HKUST)

Outline

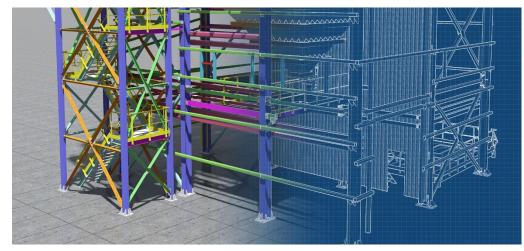
- Background and Motivations
- Leveraging 360° Cameras in 3D Reconstruction
- Optimizing Communication in Multi-Agent Path Finding
- Summary and Conclusion

Applications of 3D Reconstruction



Virtual Reality (VR)

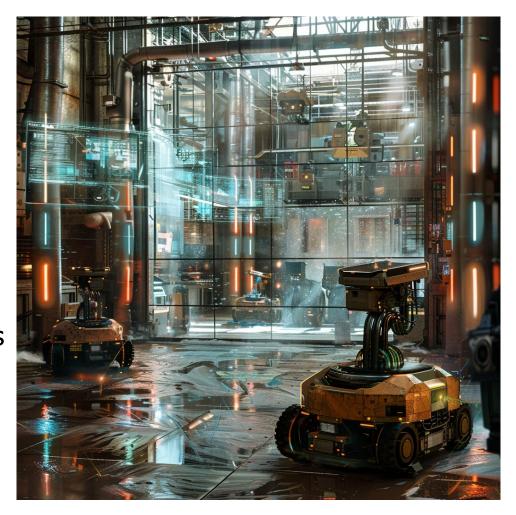
Autonomous Driving



Building Information Modeling (BIM)

Motivations for Multi-Agent 3D Reconstruction

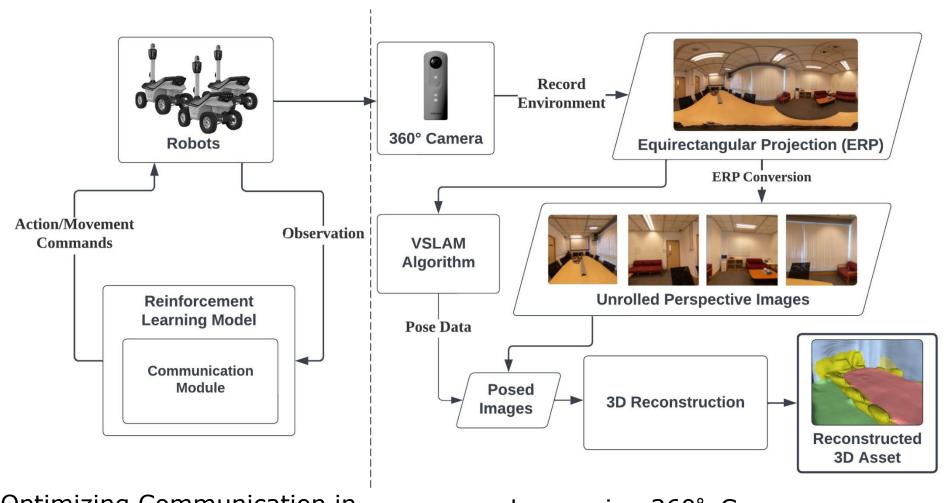
- Benefits of applying multi-agent system
- 1. Increased coverage and completeness
 - Combination of multiple viewpoints
- 2. Efficient data acquisition
 - Saving time by parallel data collection
- 3. Real-time reconstructed scene update
 - Continuous processing through fleets of agents



Motivations for Multi-Agent 3D Reconstruction

- In Building Information Modeling (BIM)& construction site monitoring
 - 1. Increased coverage and completeness
 - → Accurate documentation and design planning
- 2. Efficient data acquisition
 - → Save significant time and cost
- 3. Real-time reconstructed scene update
 - → Correct building errors in time

Thesis Organization and Contribution

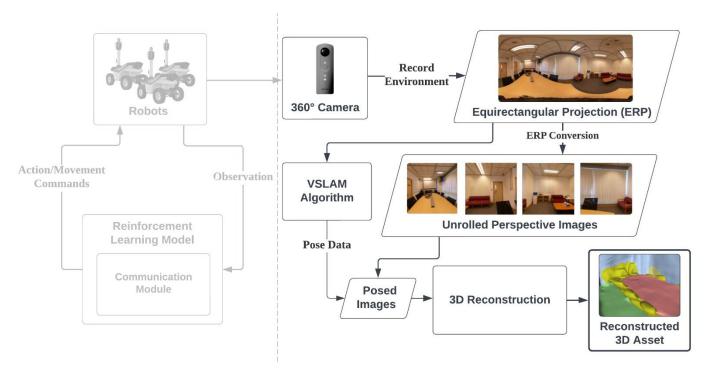


Optimizing Communication in Multi-Agent Path Finding

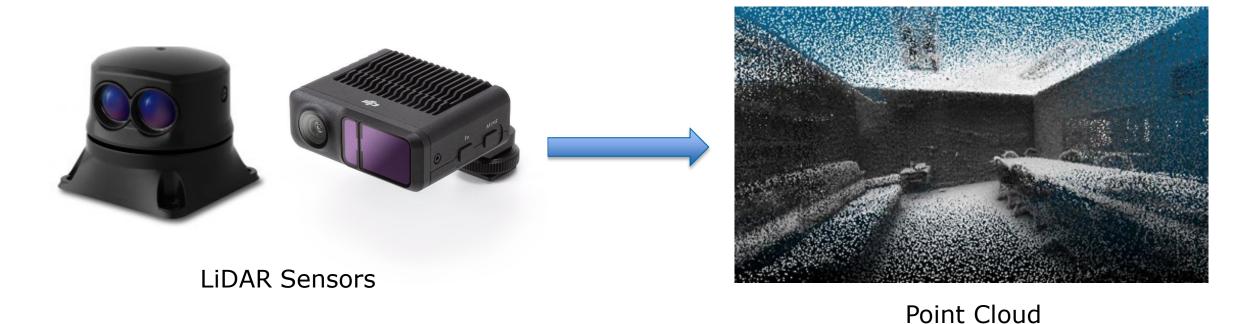
Leveraging 360° Cameras in 3D Reconstruction

Outline

- Background and Motivations
- ▶ Leveraging 360° Cameras in 3D Reconstruction
- Optimizing Communication in Multi-Agent Path Finding
- Summary and Conclusion

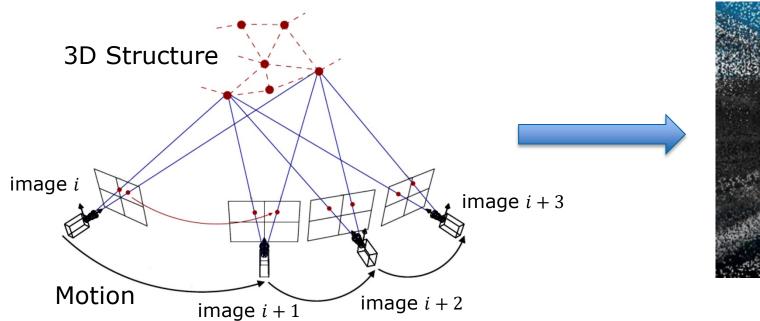


Conventional 3D Reconstruction



- Range sensors such as LiDAR can generate 3D point clouds
 - More expensive
 - Struggle in low albedo/dark surface
 - Point clouds can be noisy

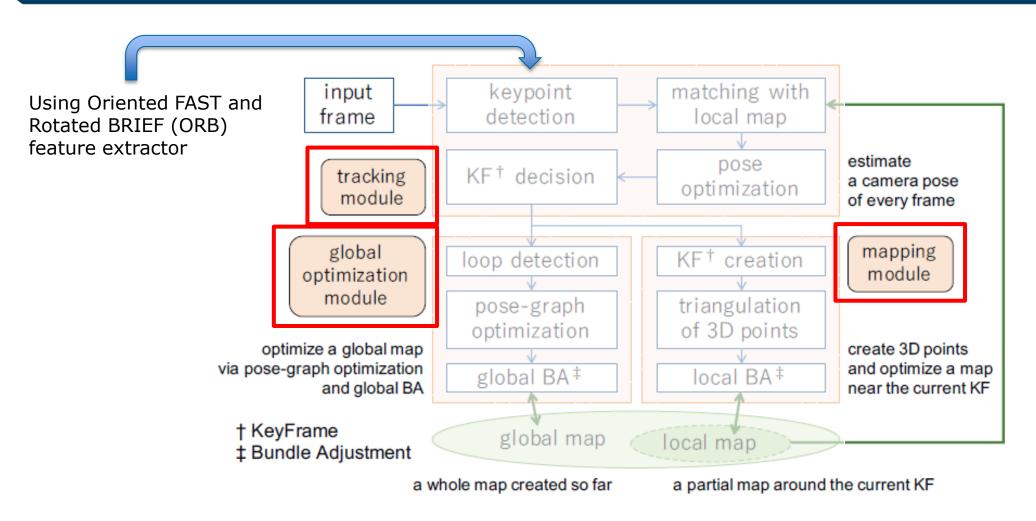
Conventional 3D Reconstruction



Point Cloud

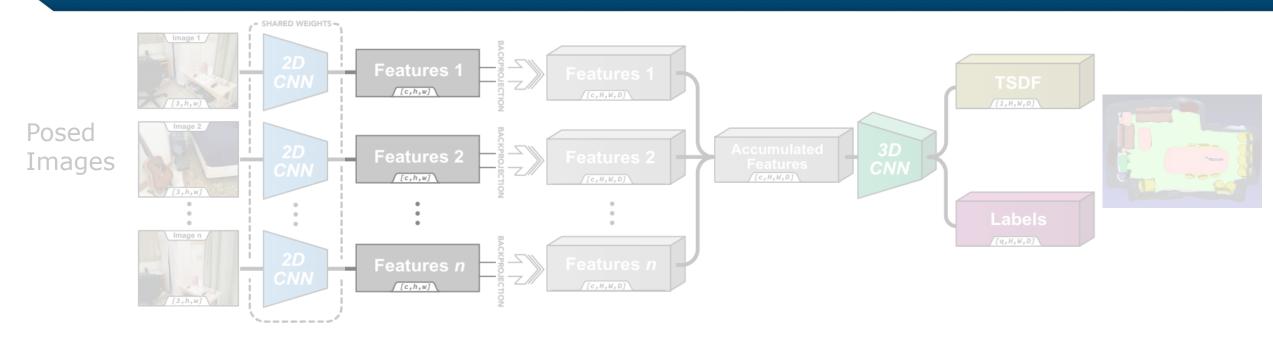
- Structure from Motion
 - Tracks corresponding features across different images
 - Estimates 3D structure and camera poses from a set of 2D images
 - Sensitive to noise, sparse results, and high processing demands

Prior Works on Camera Pose Estimation



OpenVSLAM : A versatile visual SLAM framework Sumikura et al., ACM MM'19

Prior Works on Learning-based 3D Reconstruction



Atlas: End-to-end 3D scene reconstruction from posed images

Murez et al., ECCV'20

- Extract 2D features with 2D convolutional neural network (CNN)
- Backproject 2D features into 3D features using pose data
- Refine accumulated 3D features into a 3D model

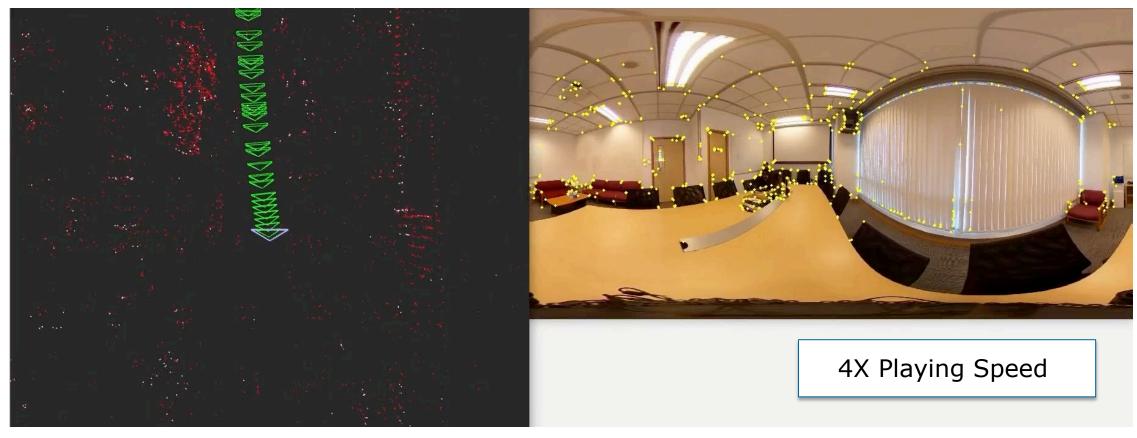
Motivations for Utilizing 360° cameras

- Commonly used for surveillance purposes
- Advantages of using 360° cameras
 - Enhanced Coverage
 - Captures full spherical view of the environment
 - Simplified Data Collection
 - No need to capture from multiple angles
- Challenges and limitations
 - Complex 360° camera calibration
 - Challenging to integrate with existing deep learning pipelines for 3D reconstruction

360° camera tested: Ricoh Theta V

Equirectangular Projection (ERP)

Pose Estimation

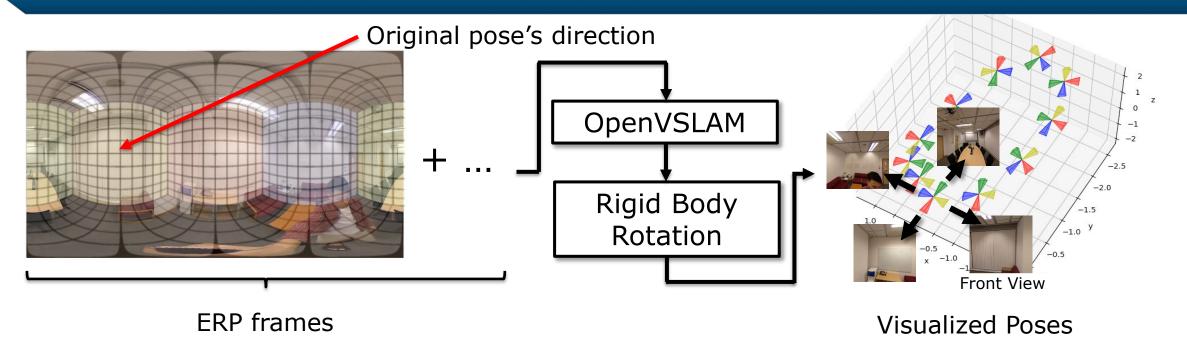


3D Point Cloud & Poses

Video from 360° Camera

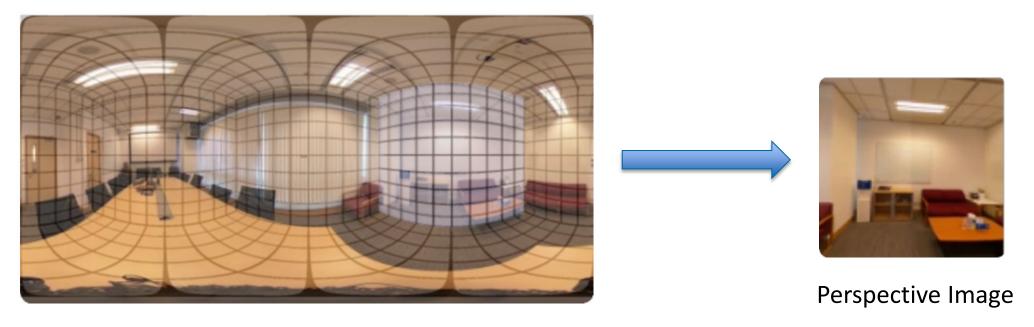
Extracting poses from a 360° video using OpenVSLAM

Pose Estimation



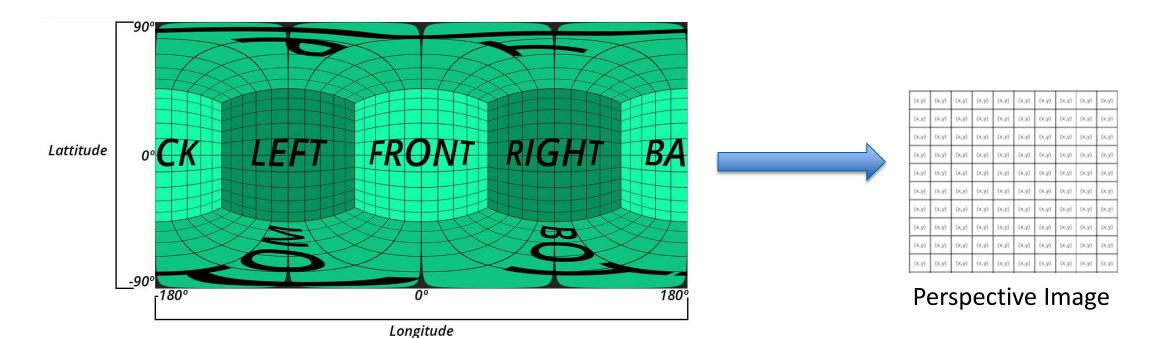
- Obtain poses of every ERP frames from OpenVSLAM
- Transform ERP's poses to 3 extra poses with 90° difference using rigid body rotation
- Each of the transformed pose correspond to a perspective image

To convert an ERP to a perspective image



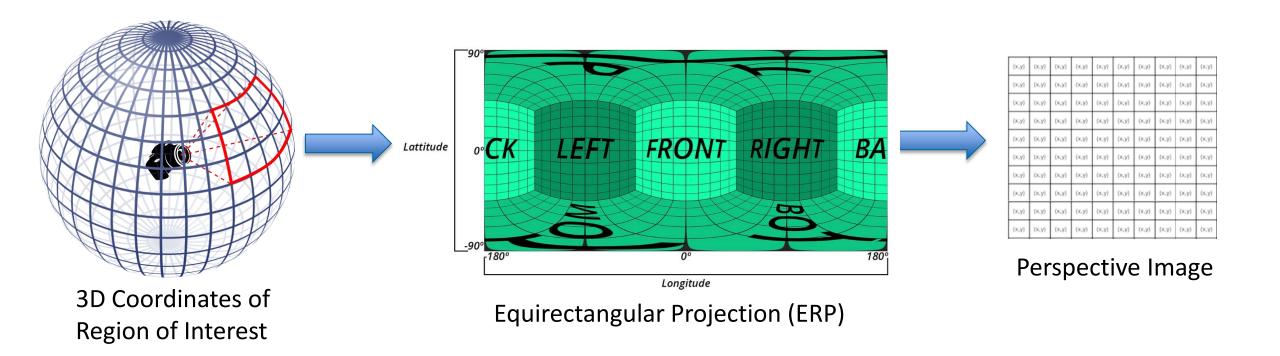
Equirectangular Projection (ERP)

To convert an ERP to a perspective image



Equirectangular Projection (ERP)

To convert an ERP to a perspective image



- 1. Define viewing angle and output perspective image size (H, W)
- 2. Create 3D coordinates for n ERP pixels

$$-n = H \cdot W$$

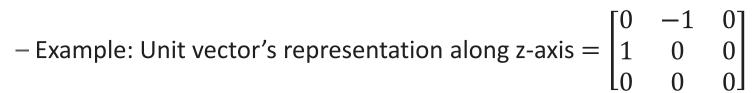
3. Rotate the 3D coordinates based on offset angles (θ, φ)

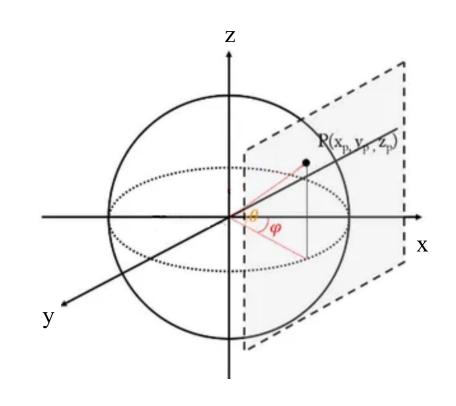
$$-v_r = v + \sin\alpha (k \times v) + (1 - \cos\alpha)k \times (k \times v)$$

•
$$v_r = Rv$$

$$-R = I + (\sin \alpha)K + (1 - \cos \alpha)K^2$$

$$-K = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}$$





4. Convert 3D coordinates to latitude and longitude

$$latitude = \sin^{-1}\frac{z}{r}$$

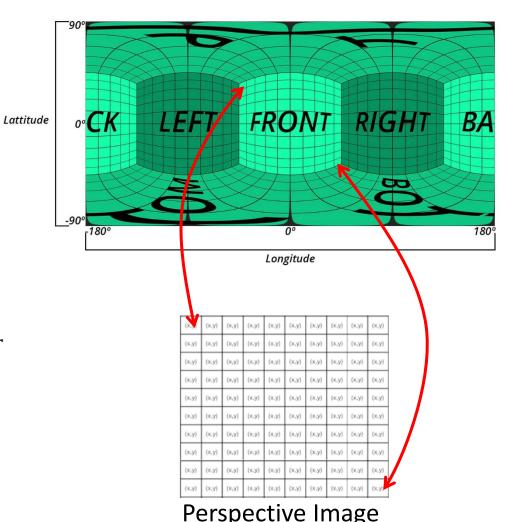
$$longitude = \tan \frac{y}{x}$$

5. Obtain ERP pixels based on latitude and longitude

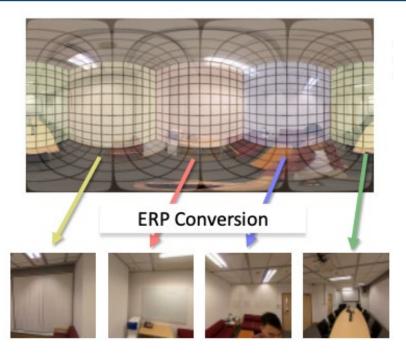
$$x_{ERP} = \frac{longitude}{180} \cdot x_{ERP_center} + x_{ERP_center}$$

$$y_{ERP} = \frac{latitude}{90} \cdot y_{ERP_center} + y_{ERP_center}$$

6. Remap the ERP pixels to the perspective image



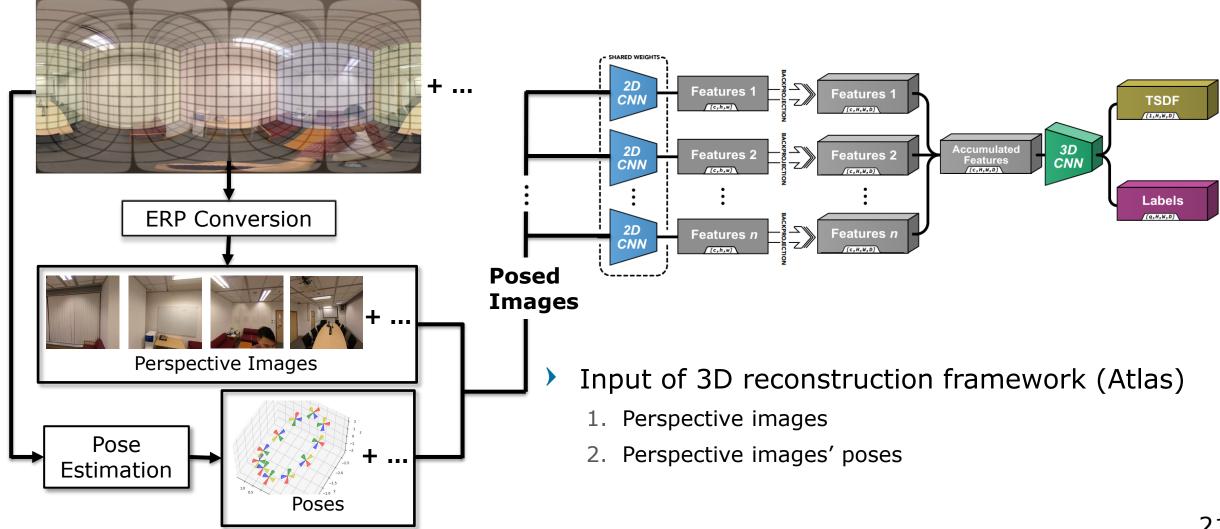
Equirectangular Projection (ERP)



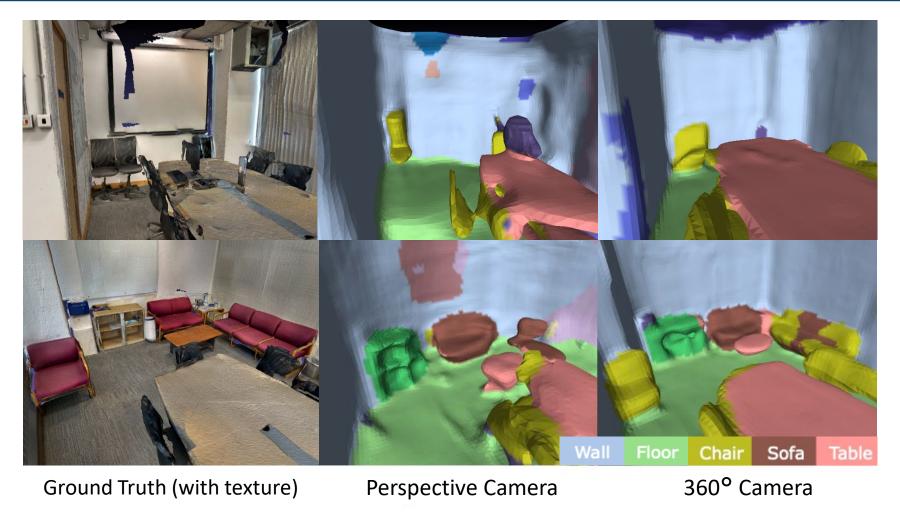
4 Perspective Images

- Convert an ERP into 4 perspective images
- Treat the 4 views as part of cube-maps, resembling four virtual cameras of field of view of 90°, pointing in 4 directions
- The final perspective images are compatible with established deep learning pipelines

3D Reconstruction Pipeline



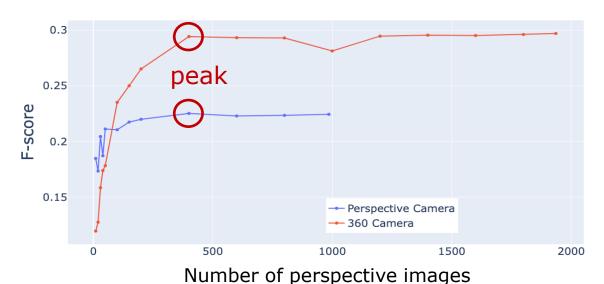
Qualitative 3D Reconstruction Results



3D semantics comparison

Data Collection Efficiency

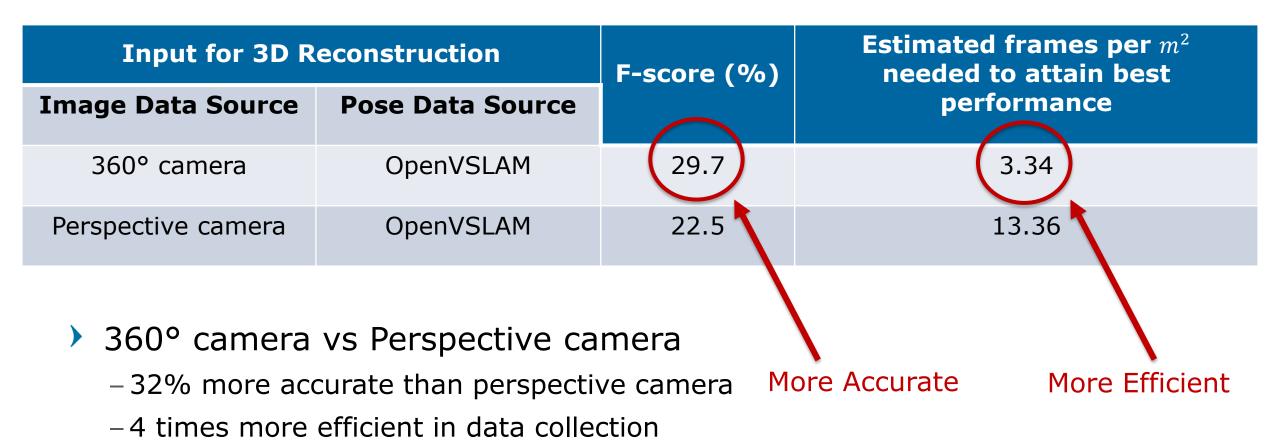
Number of Frames vs F-score



- Finding the least amount of posed images needed for best performance
 - 1. 360° camera: 400 perspective images → **100 ERP**
 - 2. Perspective Camera: 400 perspective images
- Total images captured
 - 1. 360° camera: 500 ERP
 - 2. Perspective Camera: 1000 perspective images

Quantitative 3D Reconstruction Results

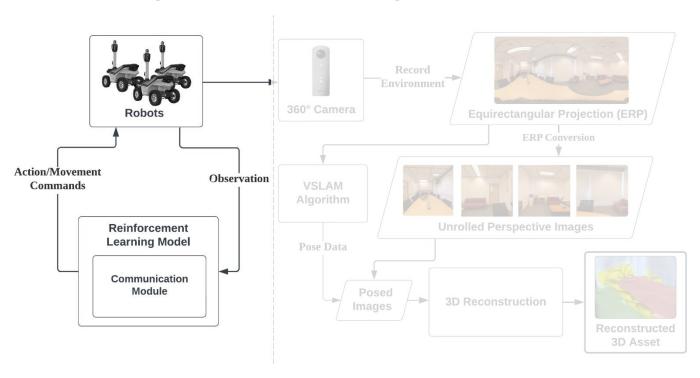
Test environment size: $\sim 30m^2$



24

Outline

- Background and Motivations
- Leveraging 360° Cameras in 3D Reconstruction
- Optimizing Communication in Multi-Agent Path Finding
- Summary and Conclusion



Optimizing Communication in Multi-Agent Path Finding

- The Rise of Autonomous Systems:
 - Surveillance or monitoring robots
 - Autonomous vehicles
 - Warehouse robots
- The robots will soon operate in large numbers
- Scalable Multi-agent Path Finding (MAPF) relies on decentralized decision-making
- In a partially observable environment, agents need communication to
 - Coordinate actions
 - Share information

Problem Formulation of Multi-Agent Path Finding

- Given a graph G = (V, E), with start and destination vertices as $\{s_1, ..., s_n\} \in V$ and $\{d_1, ..., d_n\} \in V$
 - The location change $v \to v'$ caused by an agent's movement corresponds to an edge in the graph (i.e., $v \to v' \in E$)
- Denote a sequence of actions taken by agent i from the beginning to time t as $\pi_i = \{a_1, \dots, a_t\}$
- The MAPF solution $\pi = \{\pi_1, ..., \pi_n\}$ comprises all actions from n agents
- Forbidden conflicts
 - Vertex collision: agent i and j stays on the same location simultaneously $l_i(t) = l_j(t)$
 - Edge collision: agent i and j try to move on the same edge $(v \rightarrow v' \in E)$

Prior Works on MAPF via Reinforcement Learning

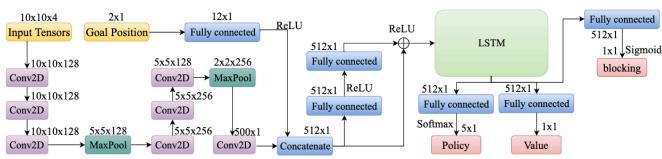


Fig. 3. The neural network consists of 7 convolutional layers interleaved with maxpooling layers, followed by an LSTM.

critic network channel 1 channel 2 channel 3 shared layers action probability

grid world environment

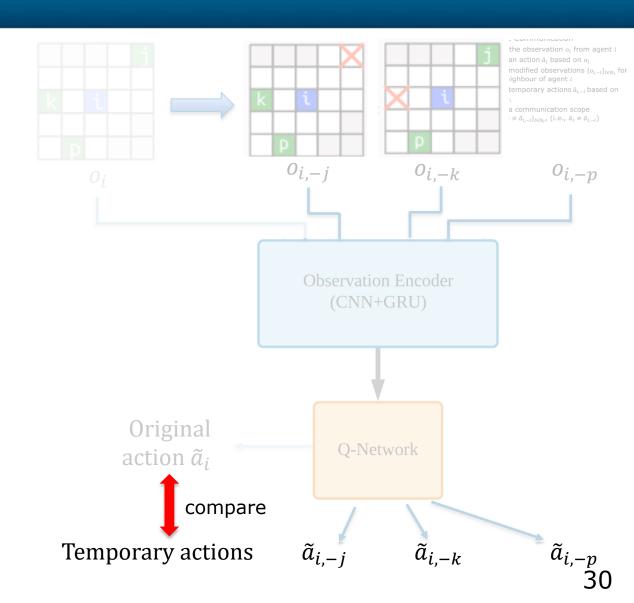
MAPPER, Liu et al., IROS'20

PRIMAL, Sartoretti et al., RA-L'19

- Limitations
 - Heavily rely on expert algorithms
 - No communication involved

Selective Communication

- Selective Communication
 - 1. Gather the observation o_i from agent i
 - 2. Create an action \tilde{a}_i based on o_i
- 3. Create modified observations $\{o_{i,-l}\}_{l \in N_i}$ for each neighbour of agent i
- 4. Create temporary actions $\tilde{a}_{i,-l}$ based on $\{o_{i,-l}\}_{l\in N_i}$
- 5. Create a communication scope $\mathbb{C}_i = \{l | \tilde{a} \neq \tilde{a}_{i,-l}\}_{l \in \mathbb{N}_i}$, (i.e., $\tilde{a}_i \neq \tilde{a}_{i,-l}$)

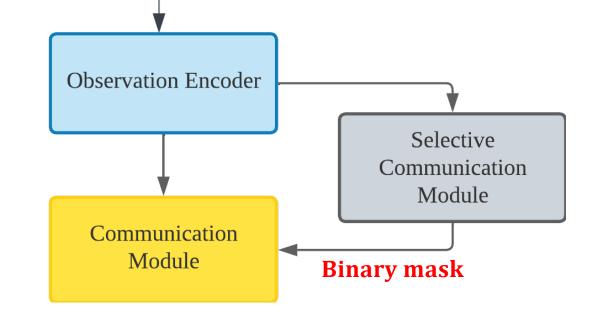


Binary Mask of Communication Scope

- i affects j & j does not affect i
 - $binary mask = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{1} & 1 \end{bmatrix}$
- i & j does not affect each other

$$- \text{ binary mask} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}$$

- i & j affect each other
 - $binary mask = \begin{bmatrix} 1 & \mathbf{1} \\ \mathbf{1} & 1 \end{bmatrix}$

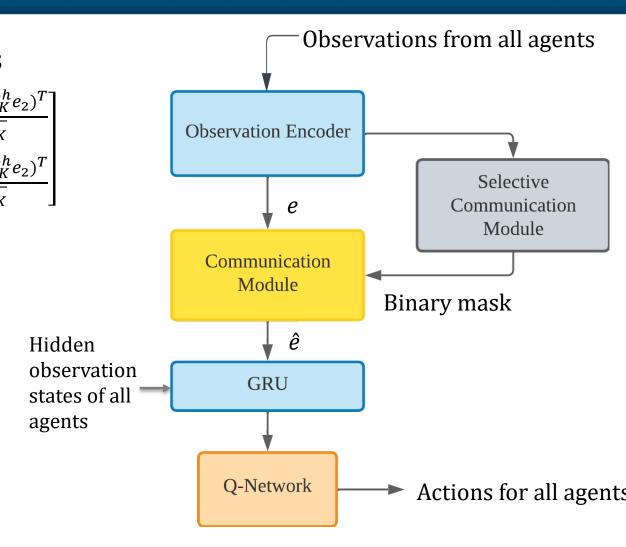


Observations from all agents

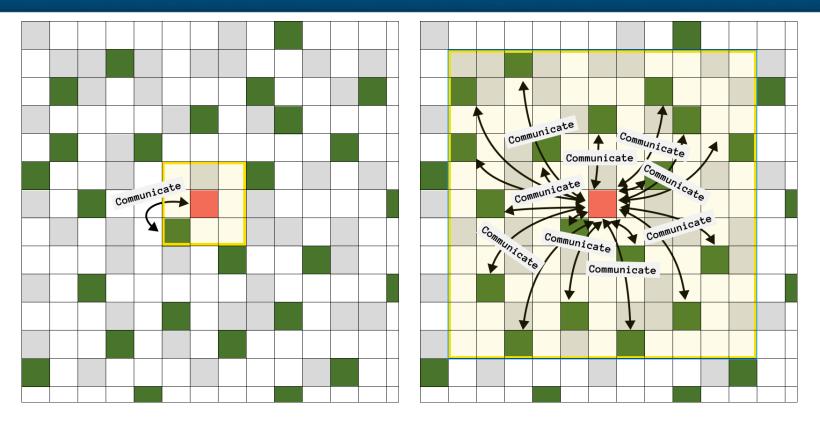
ightharpoonup Masked information = information \cdot binary mask

Communication Module

- Calculating attention scores across all agents
 - Attention score $\mu^h = softmax \begin{bmatrix} \frac{W_Q^h e_1(W_K^h e_1)^T}{\sqrt{d_K}} & \frac{W_Q^h e_1(W_K^h e_2)^T}{\sqrt{d_K}} \\ \frac{W_Q^h e_2(W_K^h e_1)^T}{\sqrt{d_K}} & \frac{W_Q^h e_2(W_K^h e_2)^T}{\sqrt{d_K}} \end{bmatrix}$
 - -e: observation embeddings matrix of all agents
- Masked attention score
 - = attention scores \cdot binary mask
- Embeddings from communication module
 - Attention weight $w^h = \mu^h W_V^h e$
 - $-\hat{e} = f_o \left[concat \left[\sum w^h, \forall h \in H \right] \right]$
 - $-f_o$: fully connected layer



Optimizing Field-of-View



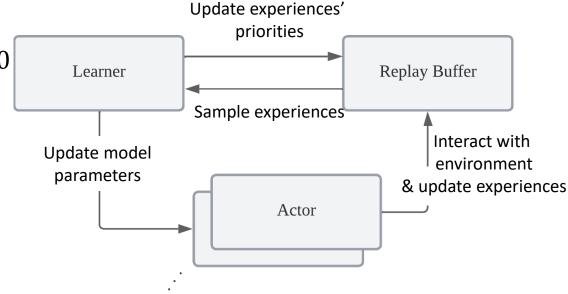
- Growing trend to use attention mechanism to explain relationship and share information between agents
- > A larger Field-of-View (FOV) might have more redundant information

Motivation of Studying Field-of-View

- Field-of-View (FOV) represents
 - Perception range
 - Example: LiDAR sensors in autonomous robots
 - Communication scope
- Importance of studying FOV
 - Balancing performance and computational efficiency
 - Enhancing real-world deployment of multi-agent systems under resource constraints
- Current research landscape
 - Often neglected in reinforcement learning based MAPF studies
 - Many research studies use the same FOV (9×9) without extensive exploration

Experiment

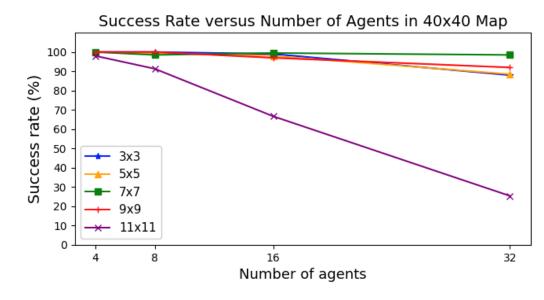
- Curriculum training
 - -5 models with FOV: $\{3 \times 3, 5 \times 5, 7 \times 7, 9 \times 9, 11 \times 11\}$
 - -Starts with 2 agents and map size of 10×10
 - Up to 20 agents and max map size of 40×40
- Testing
 - FOV: $\{3 \times 3, 5 \times 5, 7 \times 7, 9 \times 9, 11 \times 11\}$
 - Number of agents: {4, 8, 16, 32}
 - Maps: $\{40 \times 40, 80 \times 80\}$
 - Max. steps allowed: 256
- Trained on HKUST HPC3 with Ape-X framework
 - 2 RTX 6000 GPUs and 16 Intel Xeon Gold 6230 CPUs

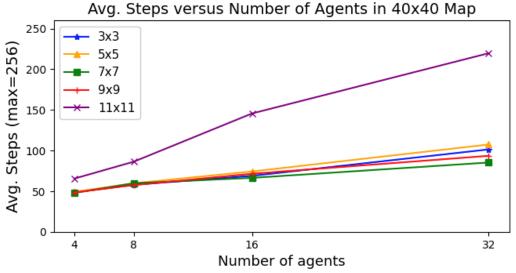


Ape-X framework Horgan et al., ICLR'18

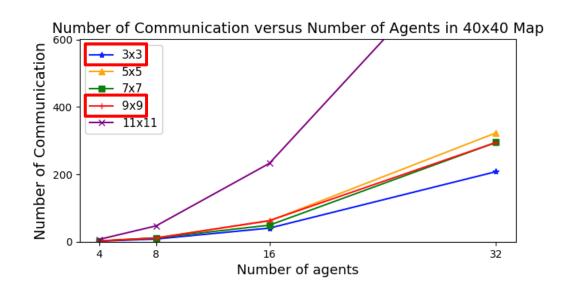
MAPF Performance

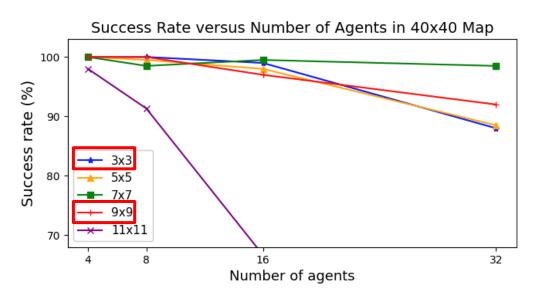
- Metrics
 - Success rate
 - Percentage of agents reaching the destination within the maximum number of steps
 - Average steps
 - Steps number needed to finish MAPF tasks across all agents
- \blacktriangleright The 7 × 7 FOV
 - Outperforms the baseline in both success rate and average steps
- \blacktriangleright The 3 × 3 FOV
 - With the least amount of information
 - Comparable performance with the baseline





Communication Overhead

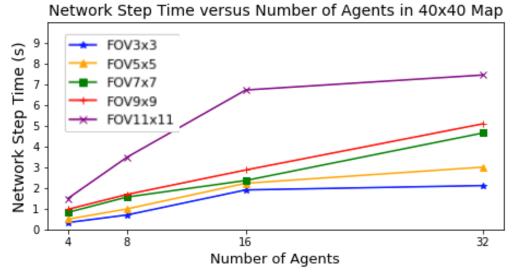


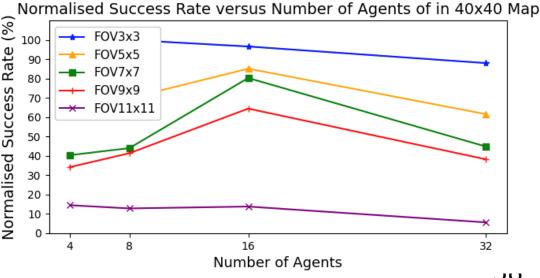


- > Smallest FOV (3×3) reduced communication by 28.9% with only 1.7% decrease in average success rate compared to baseline (9×9)
- The 3×3 FOV is restricted in communication capacity
 - Reducing communication overheads and redundant information received

Computation Efficiency and Performance

- Analyzing computation time
 - Proportional to FOV size
 - Affected by communication scope & observation size
- All computation time is normalized by the minimum time
 - Eliminate hardware differences
 - -i.e., 3×3 always have normalized time of 1
- Normalized success rate
 - Take computation time into consideration
 - $-r' = \frac{r}{\bar{t}}, r = \text{success rate, } \bar{t} = \text{normalized time}$
 - -3×3 is the most efficient

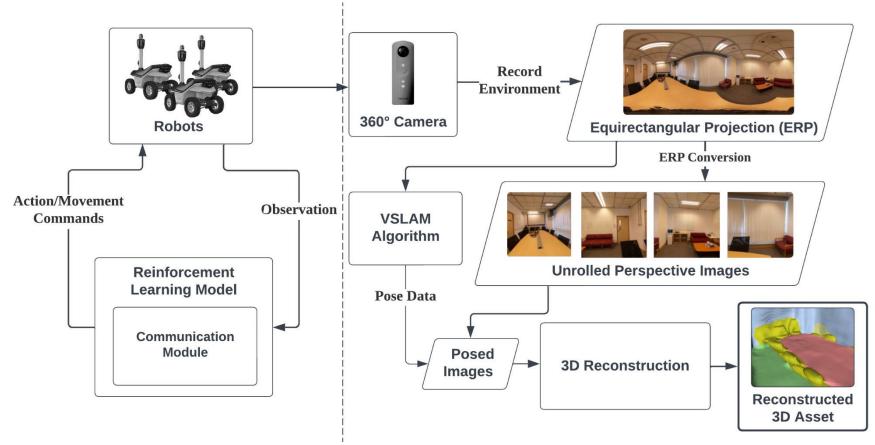




Outline

- Background and Motivations
- Leveraging 360° Cameras in 3D Reconstruction
- Optimizing Communication in Multi-Agent Path Finding
- Summary and Conclusion

Summary and Conclusion



- 1. A 3D reconstruction pipeline for 360° cameras
- 2. A communication-based MAPF framework and a FOV study

Future Works

- Explore the following approaches
 - Data fusion for 3D reconstruction
 - Combining measurements from LiDAR and Inertial sensors
 - 3D reconstruction algorithms
 - 3D Gaussian Splatting, 3D-aware diffusion model, NeRF, etc
 - Evaluation on simulation platform
 - Test our MAPF algorithm on simulation platform such as Gazebo and Issac Sim

Contribution List

- **H. C. Cheng**, Z. Hong, B. Hussain, Y. Wang, and C. P. Yue, "Development of Multi-Agent-based Indoor 3D Reconstruction," (Under Review), Robotics, 2024.
- **H. C. Cheng**, B. Hussain, Z. Hong, and C. P. Yue, "Leveraging 360° camera in 3d reconstruction: A vision-based approach," in International Journal of Signal Processing Systems, vol. 12, pp. 1–6, 2024.
- **H. C. Cheng**, L. Shi, and C. P. Yue, "Optimizing Field-of-View for Multi-Agent Path Finding via Reinforcement Learning: A Performance and Communication Overhead Study," 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 2141-2146, 2023.
- C. P. Yue, **H. C. Cheng**, and Z. Hong, "Enabling Technologies for Multi-Robot Human Collaboration," *International Workshop on Signal Processing and Machine Learning*, 12943, pp. 286-293, 2023.
- B. Hussain, Y. Wang, R. Chen, **H. C. Cheng**, and C. P. Yue, "LiDR: Visible Light Communication-Assisted Dead Reckoning for Accurate Indoor Localization," IEEE Internet of Things Journal, 9(17), pp. 15742-15755, 2022.
- B. Xu, B. Hussain, Y. Wang, **H. C. Cheng**, and C. P. Yue, "Smart Home Control System Using VLC and Bluetooth Enabled AC Light Bulb for 3D Indoor Localization with Centimeter-Level Precision," Sensors, 22(21), pp. 8181, 2022.
- B. Xu, B. Hussain, X. Liu, T. Min, H. C. Cheng, and C. P. Yue, "Smart Home Control System Using VLC-Enabled High-Power LED Lightbulb," 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), pp. 744-745, 2021.

42

Acknowledgements

> Supervisor: Prof. Child Patrick Yua

Committee Membe

-Prof. Ling Shi

-Prof. Shenghui S

Optical Wireless La



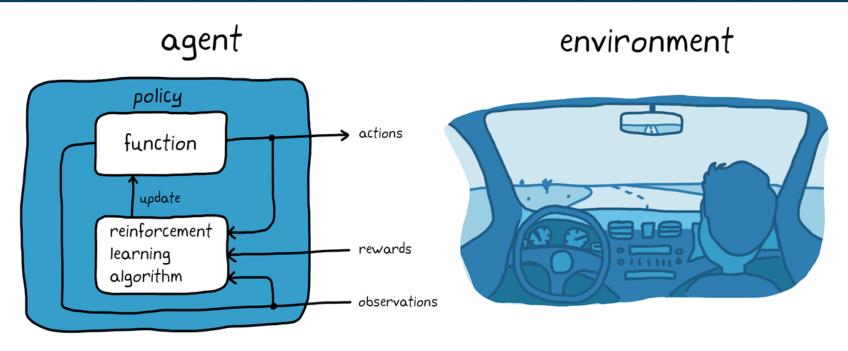
Thank You!

Optical Wireless Lab (OWL) & Integrated Circuit Design Center (ICDC)

Department of Electronic and Computer Engineering (ECE)

The Hong Kong University of Science and Technology (HKUST)

Reinforcement Learning

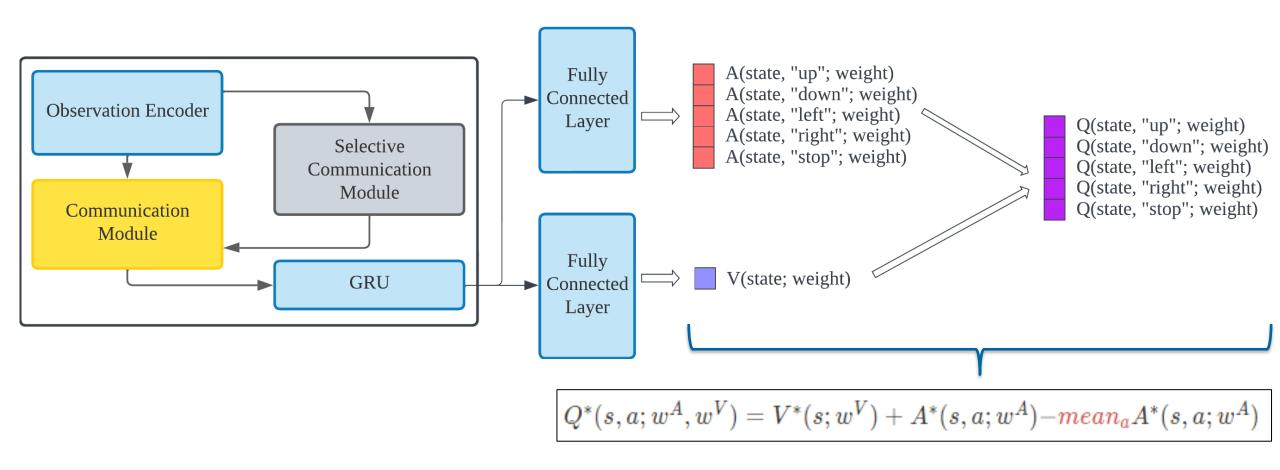


- 1. Initialize environment and policy
- 2. Define reward structure
- 3. Interact with environment
- 4. Update the policy based on the reward

Reinforcement Learning

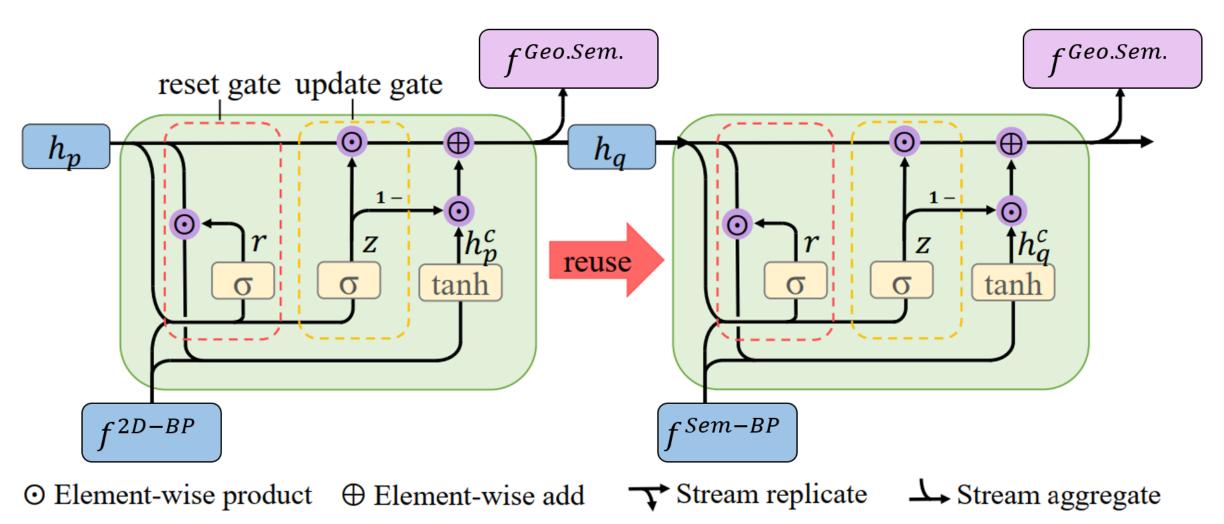
- Sampling experiences
 - For each agent: interact with environment and store the transition in replay buffer
 - Transition = [state, action, rewards, next state]
- Training
 - 1. Sample batches from replay buffer
 - 2. Target value = rewards + discount factor * network(next state)
 - Assuming higher accuracy
 - 3. Loss = MSE(target value, network(state))
 - Backpropagate the loss and update network

Dueling Deep Q-Network



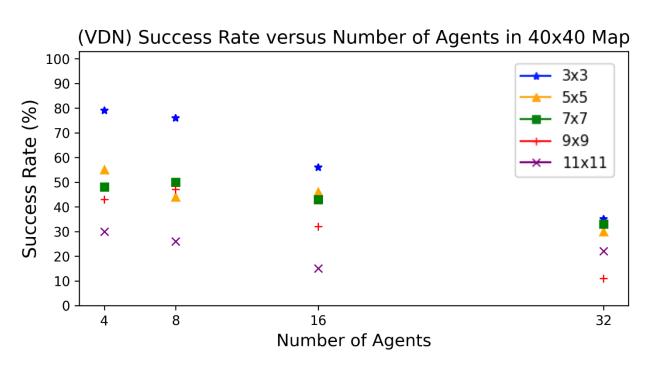
Output of the final GRU = input of 2 fully connected layers

GRU Design



FOV Study on Value-Decomposition Networks (VDN)





Similarly, smaller FOV shows better performance in VDN

Communication Module (All Agents)

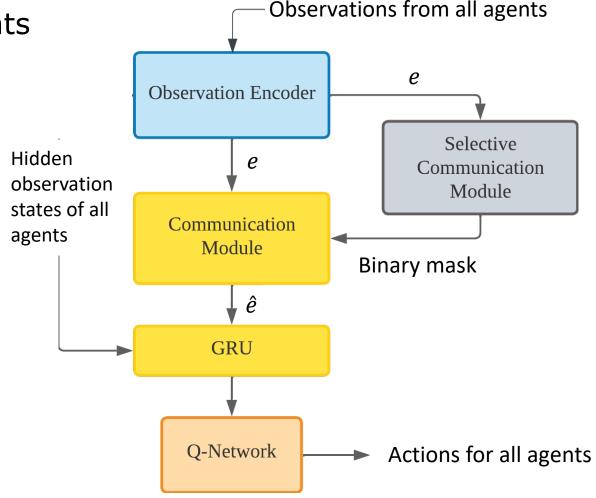
Calculating attention score across all agents

$$-\mu^{h} = softmax \left[\frac{W_{Q}^{h} e \cdot (W_{K}^{h} e)^{T}}{\sqrt{d_{K}}} \right]$$

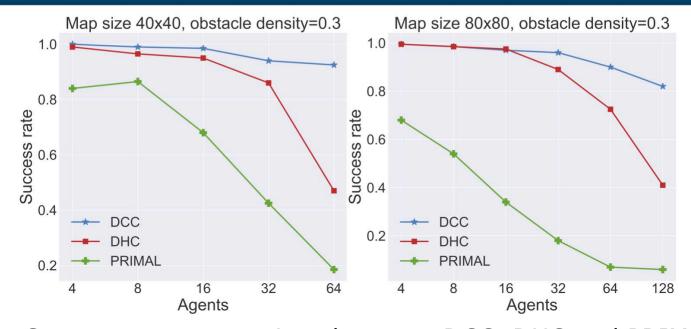
- -e: observation embeddings of **all agents**
 - size = batch size × no. of agents × no. of agents × observation embedding size
- Embeddings from communication module

$$-\hat{e} = f_o \left[concat \left[\sum \mu^h W_V^h e, \forall h \in H \right] \right]$$

 $-f_o$: fully connected layer



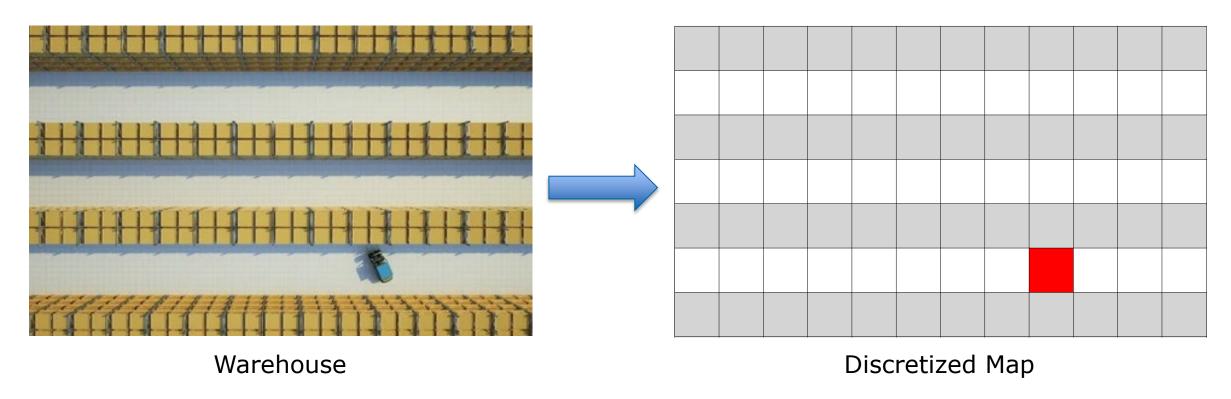
Why Selective Communication



Success rate comparison between DCC, DHC and PRIMAL

- Major difference between DCC & DHC
 - DCC communicate as needed
 - DHC's performance drops drastically when congestion happens
- DHC: broadcast communication

From Discrete MAPF to Real World Deployment



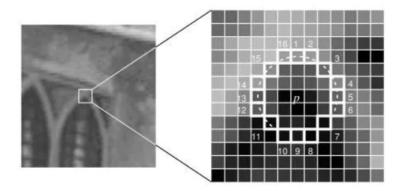
- Digitalize the real world
 - Use the MAPF RL algorithm as a global planner
 - Use algorithms such as TEB planner as a local planner and navigate through complex environment

References

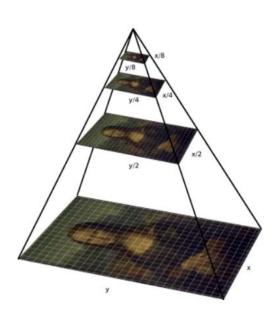
- R. Stern et al., "Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks," in Symposium on Combinatorial Search, pp. 151–159, 2019.
- Z. Ma et al., "Learning Selective Communication for Multi-Agent Path Finding," IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 2, pp. 1455-1462, 2022.
- Z. Ma et al., "Distributed Heuristic Multi-Agent Path Finding with Communication," IEEE International Conference on Robotics and Automation (ICRA), pp. 8699-8705, 2021.
- D. Horgan et al., "Distributed Prioritized Experience Replay," International Conference on Learning Representations, 2018.

ORB Feature Extractor

- Oriented FAST and Rotated BRIEF (ORB) feature extractor
- Features from Accelerated and Segments Test (FAST) key point detector

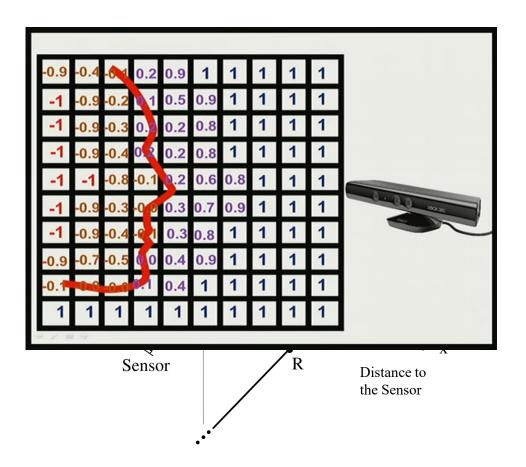


Binary robust independent elementary feature (BRIEF) descriptor

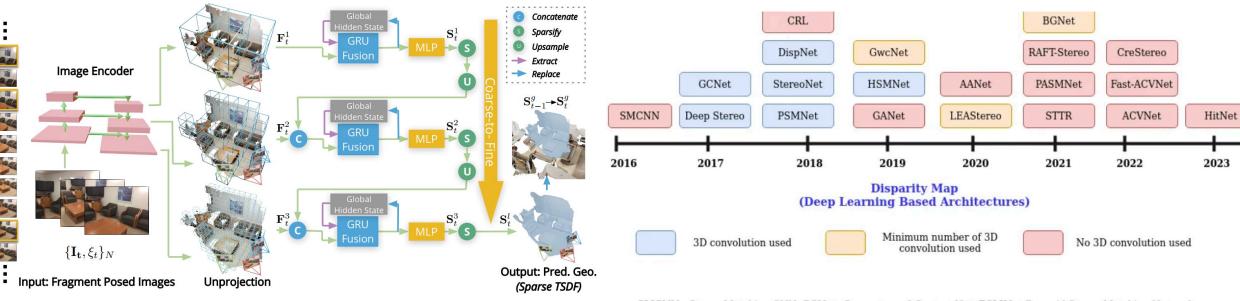


Voxelization: Truncated Signed Distance Function/Field (TSDF)

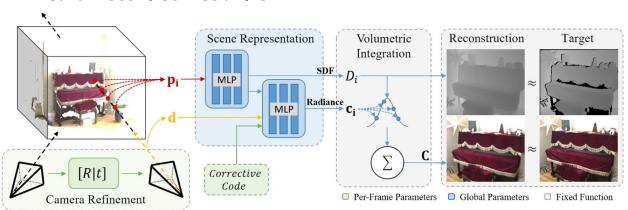
- Consider a bird-eye view of a surface
 - SDF: Each voxel center's signed distance to its nearest object surface
 - $sdf_i(x) = depth_i(pic(x)) cam_z(x)$
 - Surface's SDF value is 0
 - -TSDF: Truncation into [-1, 1]
 - better occupancy representation and storage



Other 3D Reconstruction Techniques



NeuralRecon, Sun et al., CVPR'21

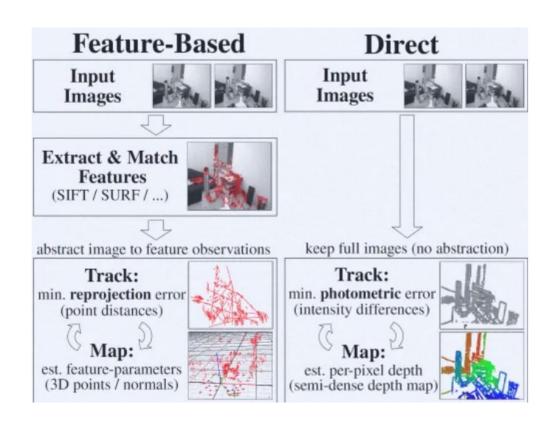


SMCNN: Stereo Matching CNN, GCNet: Geometry and Context Net, PSMNet: Pyramid Stereo Matching Network, DispNet: DisparityNet, CRL: Cascade Residual Learning, GANet: Guided Aggregation Net, HSMNet: Hierarchical Stereo Matching, GwcNet: Group-wise Correlation StereoNet, AANet: Adaptive Aggregation Network LEAStereo: Learning Effective Architecture Stereo, STTR: Stereo Transformer, BGNet: Bilateral Grid Network PASMNet: Parallax-attention stereo matching network, ACVNet: Attention Concatenation Volume

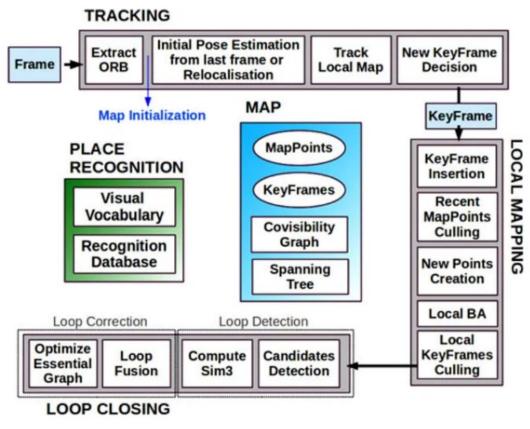
CreStereo: Cascade Recurrent Network, HitNet: Hierarchical Iterative Tile Refinement Network

Neural RGB-D, Azinović et al., CVPR'22

Other VSLAM Techniques

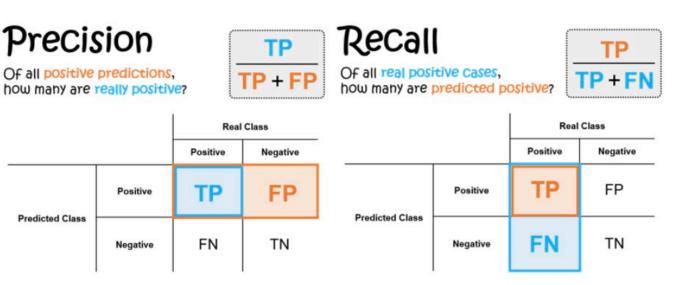


- Indirect vs direct SLAM
- Alternative: ORB-SLAM2



ORB-SLAM2

Performance metric: F-score



$$rac{F_1 = 2 \cdot }{ rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{TP}}{ ext{TP} + rac{1}{2}(ext{FP} + ext{FN})}$$

 \mathbf{TP} = number of true positives

FP = number of false positives

FN = number of false negatives

- Widely used metric in classification tasks
- Measuring a model's predictive performance

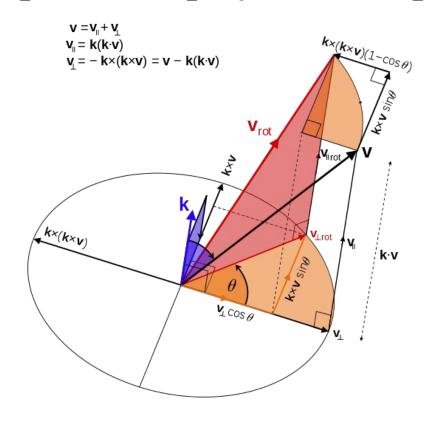
Rodrigues' Rotation

$$egin{bmatrix} \left[egin{array}{c} (\mathbf{k} imes\mathbf{v})_x \ (\mathbf{k} imes\mathbf{v})_y \ (\mathbf{k} imes\mathbf{v})_z \end{bmatrix} = egin{bmatrix} k_yv_z - k_zv_y \ k_zv_x - k_xv_z \ k_xv_y - k_yv_x \end{bmatrix} = egin{bmatrix} 0 & -k_z & k_y \ k_z & 0 & -k_x \ -k_y & k_x & 0 \end{bmatrix} egin{bmatrix} v_y \ v_z \end{bmatrix}. \qquad \mathbf{K} = egin{bmatrix} 0 & -k_z & k_y \ k_z & 0 & -k_x \ -k_y & k_x & 0 \end{bmatrix}.$$

$$\mathbf{k} imes \mathbf{v} = \mathbf{K} \mathbf{v}, \qquad \qquad \mathbf{k} imes (\mathbf{k} imes \mathbf{v}) = \mathbf{K} (\mathbf{K} \mathbf{v}) = \mathbf{K}^2 \mathbf{v} \,.$$

$$\mathbf{R} = \mathbf{I} + (\sin heta) \mathbf{K} + (1 - \cos heta) \mathbf{K}^2$$

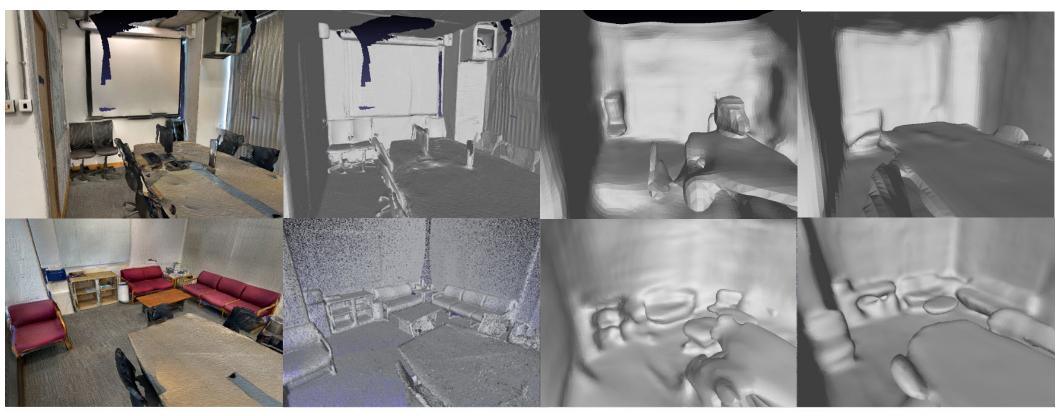
$$\mathbf{v}_{\text{rot}} = \mathbf{v} + (1 - \cos \theta) \mathbf{k} \times (\mathbf{k} \times \mathbf{v}) + \sin(\theta) \mathbf{k} \times \mathbf{v}.$$



Generating Ground Truth Models

Ground truth data obtained from a LiDAR sensor

Qualitative 3D Reconstruction Results



Ground Truth (with texture)

Ground Truth (without texture)

Perspective Camera

360 Camera

3D model comparison

References

- X. Song et al, "Apollocar3d: A large 3d car instance understanding benchmark for autonomous driving," in Proceedings of the IEEE/CVF Conference on CVPR (pp. 5452-5462).
- S. Sumikura et al., "OpenVSLAM: A versatile visual SLAM framework," in *Proceedings of the 27th ACM International Conference on Multimedia* (pp. 2292-2295), 2019.
- Z. Murez et al., "Atlas: End-to-end 3d scene reconstruction from posed images," in Proceedings of the ECCV 2020 (Part VII 16 (pp. 414-431), 2020.
- Behind the Robot: HITT's Construction Site Monitoring Husky UGV Clearpath Robotics: https://clearpathrobotics.com/blog/2021/10/behind-the-robot-hitts-construction-site-monitoring-husky-ugv/
- Digital Giza: Tomb of Queen Meresankh III (G 7530-7540): http://giza.fas.harvard.edu/giza3d/?mode=matterport&m=d42fuVA21To

More on Future Works

- Applications in multi-agent 3D reconstruction
 - Multiple UAVs doing 3D recon: https://www.intechopen.com/chapters/68371