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Research Background

Exponential Rise in Data from 2010 to 2025*
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• Cutting-edge information technologies create massive data volume
• Data center interconnects to be upgraded towards higher data rate and better energy efficiency

(*IDC and Statista, "Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, 
with forecasts from 2021 to 2025," in https://www.statista.com/statistics/871513/worldwide-data-created/, June 2021.) 1/60
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Electrical vs MM Optical vs SM Optical Links
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Electrical vs MM Optical vs SM Optical Links

Wireline Interconnect Roadmap*

(*Joris Van Campenhout, "Silicon Photonics Technology for Next-
Generation Transceivers," in ISSCC 2022 Forum 4, Feb. 2022.)

• High loss, low bandwidth
• Low cost
• Distance-data rate product (DDP) < 100 Gb/s*m

Electrical Link

MM Optical Link

SM Optical Link

• Low loss, high bandwidth
• Moderate cost, dispersion issue
• 100 Gb/s*m < DDP < 4000 Gb/s*m

• Low loss, high bandwidth, low dispersion
• High cost
• 4000 Gb/s*m < DDP
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Thesis Scope
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Imperfections of VCSEL

• Bias current ↑, E/O gain ↓
(GB > GM > GT)    

• Bias current ↑, bandwidth ↑
(BWB < BWM < BWT)

• TRISE < TFALL
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Conceptual Architecture

Thermometer code-based architecture to piecewise compensate for nonlinearity in E/O gain, 
nonlinearity in bandwidth, and asymmetric responses to rising/falling transitions
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Detailed Architecture

Phase-locked Loop

Clock Tree
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 Data path
• 2-tap feed-forward equalizer
• Gm cell-merged CTLE
• Pre-emphasis circuit

 Clock path
• Wideband phase-locked loop
• Clock tree with cascading VCDLs

 Bias & control part

 Optical part
• Wire-bonded anode-driven VCSEL
• Negative bias for power saving
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4-to-1 Multiplexer (MUX)

• 4 quarter-rate data streams → 1 full-rate data stream
• Controls tap interval of the 2-tap FFE

Functions of 
4-to-1 MUX
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4-to-1 Multiplexer (MUX)

• Implemented by cascading two-stages of 2-to-1 MUXs
• 1st-stage 2-to-1 MUX serializes D0~D1 to DI and DQ

• 2nd-stage 2-to-1 MUX further serializes DI and DQ to OUT

Principle of 
4-to-1 MUX

9/60
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4-to-1 Multiplexer (MUX)

• T1: Delay from CK0 (CK180) to OUT
• T2: Delay from CK90 (CK270) to OUT
• T1 ≠ T2 → Duty Cycle Distortion of the Output

10/60



4-to-1 Multiplexer (MUX)

• T1: Delay from CK0 (CK180) to OUT
• T2: Delay from CK90 (CK270) to OUT
• T1 ≠ T2 → Duty Cycle Distortion of the Output
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4-to-1 Multiplexer (MUX)
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Output Driver

• Cascode structure for preventing breakdown issue
• Tunable tail current source for gain adjustment

Design of Pre-tap 
Gm Cell
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Output Driver

• Transistors size 2.5 times larger than pre-tap Gm cell
• Source-degenerated capacitor for BW extension
• Pre-emphasis circuit for mitigating optical eye skew

Design of Main-tap 
Gm Cell
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Output Driver

• INN ↑ → IVCSEL ↓ → INN & INP,delayed both high → A sharp current pulse Ipulse generated

15/60



Clock Tree

• Aligns the timing between the 
PRBS generator, re-timer and 4-
to-1 MUXs

• Mitigates the timing skew 
between the three slices

1st-Layer Clock Tree

2nd-Layer Clock Tree
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Clock Tree

4
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Design Under Test

Power Breakdown

A — PRBS Generator + Binary-to-therm. Encoder
B — Re-timer + 4-to-1 Multiplexers
C — Phase-locked Loop
D — Clock Tree
E — Output Driver
F — Bias Circuit + I2C

• Fabricated in 40-nm bulk CMOS
• Transmitter core occupies 0.1 mm2

• Consumes 115 mW at 56-Gb/s PAM-4
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Measurement Setup

Labjack U3-HV

Oscilloscope
(Tektronix TDS2024C)

Data

AWG
(Keysight M8196A)

CLKP CLKN

Trigger Clock

scl

sdain

sdaout

DC Power Supply
(Keysight E36312A)

Off-chip LDOs

O/E Converter
(Keysight N1092A)2-m OM2 

MMF

Oscilloscope
(Keysight N1000A)

Measurement Setup Measurement Environment

• A commercial VCSEL is wire-bonded with the transmitter for optical 
measurements

• The optical signal is butt-coupled to the multi-mode fiber
Scan to Visit 
Measurement 
Video
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Measurement Results

(a) EQ OFF, 
Equal Slice Gain

100 µW 5 ps

(b) EQ ON, Equal Slice EQ, 
Equal Slice Gain

(c) EQ ON, Equal Slice EQ, 
Piecewise Tuned Slice Gain

(d) EQ ON, Piecewise Tunned 
Slice EQ and Slice Gain

100 µW 5 ps

100 µW 5 ps 100 µW 5 ps

Avg. Height/Width: 12.12µW/2.39ps
RLM: 0       Horizontal Skew: 4.76ps

Avg. Height/Width: 39.79µW/7.15ps
RLM: 65%  Horizontal Skew: 1.89ps

Avg. Height/Width: 44.44µW/7.21ps
RLM: 89%  Horizontal Skew: 1.83ps

Avg. Height/Width: 45.46µW/7.99ps
RLM: 90%  Horizontal Skew: 1.77ps
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[ps]

(a) (b) (c) (d)

12.12 39.79 44.44 45.46

2.39 7.15 7.21 7.99

0 65% 89% 90%

4.76 1.89 1.83 1.77
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Comparison with Prior Works

[2] PTL’18 [3] JSSC’22 [4] VLSI’19 [5] ASSCC’21 [1] This work
CMOS Node [nm] 65 40 65 40 40

Architecture
Signaling Scheme

1/2-rate
PAM-4

1/4-rate
PAM-4

1/4-rate
PAM-4

1/4-rate
PAM-4

1/4-rate
PAM-4

Data Rate [Gbps] 50 56 64 64 56

OMA [mW] 2.00 0.81* 2.50* 1.08* 1.18*

Power effi. [pJ/b] 5.12 1.73 2.69# 2.09 2.05#

Core Area [mm2] 0.31 0.47 0.28 0.16 0.10

Asymmetric 
Equalization

2.5-tap DAC-
based FFE

2-tap DAC-based 
FFE

3-tap LSB/MSB-
based Asymmetric 

FFE

3-tap LSB/MSB-
based Asymmetric 

FFE

2-tap FFE + CTLE 
+ Pre-emphasis

Imperfection 
Compensation Full Full Partial Partial Full

Method Type Digital Digital Analog Analog Mixed-signal
*3-dB butt coupling loss de-embedded [6] 
#Includes on-chip PLL 21/60
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Design Challenges for Modulator TX

Optical IN

Optical 
OUTTXElec. 

IN
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Optical OUT

Time

Elec. In
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0
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• Large output swing for high optical extinction ratio
• High linearity to support advanced modulation schemes for high data rate
• High bandwidth to increase the link speed
• Equalization to compensate for high-frequency loss from E/E and E/O interfaces
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Architecture Design

Sub-DAC
Sub-DAC
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Analog serialization
• Serializes analog data streams 

from half rate to full rate

Equalization
• Generates equalized signal with a 

re-configurable FFE
• No tap generator required to save 

power
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Architecture Design

Sub-DAC
Sub-DAC

Proposed 
Linear 

TransmitterClock
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Large output swing
• Adopts a dynamic triple-stacked 

(DTS) topology to achieve large 
output swing without breakdown 

High linearity
• The DTS topology also provides 

high linearity by decreasing VCE
variations of HBTs
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Comparison btw Conv. and Prop. AMUX-FFEs
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Principle of the AMUX-FFE

When mixers of four FFE paths are turned off, the AMUX functions as a 
normal 2-to-1 serializer
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Principle of the AMUX-FFE
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DOP is the same with the output of a FFE with 1 main tap and 1 post-tap, 
tap spacing = 1 UI

CONFIG-2:
1 Main + 1 Post
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Principle of the AMUX-FFE

DOP is the same with the output of a FFE with 1 pre-tap, 1 main tap and 1 
post-tap, tap spacing = 0.5 UI

CONFIG-3:
1 Main + 1 Pre + 1 Post
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Principle of the AMUX-FFE

DOP is the same with the output of a FFE with 1 pre-tap and 1 main tap, 
tap spacing = 1 UI

CONFIG-4:
1 Main + 1 Pre
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Principle of the AMUX-FFE

Other Configurations

• Multiple other configurations can be set by simply 
delaying the clock

• For all configurations, the sum of pre-main TS and 
main-post TS is 1 UI
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pre-main TS=0.25UI, main-post TS=0.75UI
CONFIG-3
1 pre+1 main+1 post, 
pre-main TS=0.75UI, main-post TS=0.25UI
CONFIG-4



Schematic of the AMUX-FFE
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Schematic of the AMUX-FFE
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Comparison Between Driver Topologies

Limited output voltage swing Maximum output swing doubled

Conventional Cascode Breakdown Voltage (BV) Doubler
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BVCE + VBE,Q2
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VCES,Q1

BVCE

BVCE - 
VCES,Q1

VCES,Q1 + VCES,Q2

2×BVCE

Max Swing 
≤ 2×BVCE - VCES,Q1 

- VCES,Q2
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Comparison Between Driver Topologies

• Maximum output swing tripled compared to 
cascode

• Better linearity

Proposed DTS Topology

OUT

Q1

Q2

IN
VCES,Q1 + VBE,Q2

BVCE + VBE,Q2

BVCE - VCES,Q1
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BVCE

BVCE - VCES,Q1

VCES,Q1 + VCES,Q2 + VBE,Q3
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2×BVCE - VCES,Q1 
- VCES,Q2

-A1

-A2

Q3

VCES,Q1 + VCES,Q2

2×BVCE 

2×BVCE - VCES,Q1 
- VCES,Q2

VCES,Q1 + VCES,Q2 + VCES,Q3

3×BVCE

Max Swing 
≤ 3×BVCE - VCES,Q1 

- VCES,Q2 - VCES,Q3
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Schematic of the Output Driver

• Three emitter followers for ensuring appropriate DC conditions for main path, 
AUX-1 path, and AUX-2 path and buffering signals

• VDDOUT = 6.5 V

Main Path

DOP

DON

AUX-2

AUX-1

Output
OUTP

OUTN

VDDAUX2

VDDAUX1

VDDOUT

OUTP

Q1

Q3

Q2

Q4
Q5

Q6

Q7

C1 C2

C3

50Ω  

From 
AMUX
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Schematic of the Output Driver

DOP
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• AUX-1 path for dynamically biasing the base of Q6

• VDDAUX-1 = 3.5 V
AUX-1 Path
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Schematic of the Output Driver
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• AUX-2 path for dynamically biasing the base of Q7
• AUX-2 itself is a BV doubler
• VDDAUX-2 = 4.5 V

AUX-2 Path
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Schematic of the Output Driver
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Design Under Test
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• The transmitter is fabricated in 130-nm SiGe BiCMOS with fT/fmax of 250/340 GHz
• All signals are wire-bonded to the EVB for measurement
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Design Under Test

Clk Buf

Adder

In
te

r-
le

av
er

Data Buf

AU
X-

2

AUX-1

Output

AUX-1

0.
94

 m
m

1 mm

0.54 mm

0.
6 

m
m

In
te

r-
le

av
er

AU
X-

2

• The transmitter is fabricated in 130-nm SiGe BiCMOS with fT/fmax of 250/340 GHz
• All signals are wire-bonded to the EVB for measurement
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Measurement Results

4.46ps

56-Gbaud PAM-4 with FFE on

4.46 ps

4.2V

RLM: 85%

324mV

485mV

336mV

7.3V

56-Gbaud PAM-4 with FFE off56-Gbaud NRZ with FFE off

4.46ps

4.8 V

10ps

28-Gbaud PAM-8 with FFE off

    

112-Gb/s 
4.2-Vppd 
PAM-4

AMUX-FFE,
740 mW (41.5%)

AUX-1 Stage,
90 mW (5.1%) AUX-2 Stage,

110 mW (6.2%)

Emitter Follower,
280 mW (15.7%)

Output Stage,
560 mW (31.5%)

• The whole transmitter supports a maximum output swing of 7.3 Vppd @ 56-Gbaud NRZ
• With FFE, 56-Gbaud 4.2-Vppd PAM-4 is achieved, with 1.78-W power consumption
• The speed of the PAM-8 case is limited by the equipment
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Comparison with Prior Works
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Motivation

Host

Optical Modulator

Fiber
TIA 

w/ EQPD
Driver 
w/ EQ Host

Laser 
Source

Host

Optical Modulator

Fiber PD
Driver

Laser 
Source

DSP HostDSPTIADSP-based 
Solution

LPO 
Solution

• For medium-reach optical communications, linear pluggable optics (LPO) outperforms DSP-
based solutions in terms of energy efficiency, cost and latency

• However, how to implement EQ in driver? How to increase the link speed?
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Motivation

T8
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VDD

RL
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GPre GMain GPost
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OUT
RL

Distributed Amplifier

TL-based Equalizer

DelayPath-1 = DelayPath-2 = DelayPath-3

Large swing and high gain

No EQ

Pre-to-main Spacing = DelayPath-2 ̶  DelayPath-1

Main-to-post Spacing = DelayPath-3 ̶  DelayPath-2

Good EQ capability

Small swing and low gain
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Architecture Design Evolution (1st Vesion)

T
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Input TL

Output TL

GPost

TM

Large swing and high gain

Good EQ capability

• Main-to-post Spacing = 2 × DelayT + DelayTPO ̶  DelayTM

• Pre-to-main Spacing = 2 × DelayT + DelayTM  ̶  DelayTPR

Useless because 2 × DelayT + DelayTM is so close to DelayTPR

However, …

1st Version
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Architecture Design Evolution (2nd Version)
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G
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2nd Version

Large swing and high gain

Good EQ capability

DelayTPR can be smaller by minimizing HY 
to increase pre-to-main spacing

A length discrepancy of 2 × TX between 
input and output TL is introduced

However, …
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Architecture Design Evolution (Final Scheme)
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Final Scheme

Large swing and high gain

Good EQ capability

Pre-to-main and Main-to-post 
spacings can be properly set

No discrepancy between the 
lengths of input and output TLs
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Architecture Design Evolution (Final Scheme)
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1st Pre
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• The tap spacings can be designed by adjusting the length of related TL segment
• In the future, the FFE Gm cells can be designed to be controllable delay cell
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Implementation of TL Segments

• Differential signals delivered in metal-5 (M5) and shielded by three grounded CPW also in M5
• Ground plane in metal-1 (M1) implemented for substrate shielding

Signal TLs in M5 Grounded 
CPW in M5

Via

Ground Plane in M1

LTL

………

M1

M2 M2 M2
Via

M5 M5 M5 M5 M58µm 8µm 8µm 8µm

4µm 4µm

Top 
View

Cross-
section View
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Implementation of Cross-folded TL

Signal TLs in M5

Signal TLs in M6
Ground Plane in M1

8µm
4µm

Input 
TL

Output 
TL

Grounded 
CPW in M5

Signal TLs in M5

Grounded 
CPW in M5

Ground 
Plane in M1

Input TL

O
utput TL

• A cross-folded scheme to balance the lengths of input and output TLs
• Input TL jumps from M5 to M6 and then back to M5, which may bring some degradations

Conv.
Folded 
Scheme

Cross-
folded 

Scheme
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Implementation of Cross-folded TL

• The intersection results in the discontinuity of the input impedance which may degrade the 
input reflections

• The intersection aggravates the parasitic effect between input and output TLs which may 
degrade the inverse isolation
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Implementation of Cross-folded TL

Simulated Forward Gain
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• With much smaller discrepancies between the lengths of input and output TLs, the cross-folded 
scheme achieves much better in-band gain response and higher 3-dB bandwidth
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Schematic of the Gm Cell
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Design of Gm Cell

• All the main-tap and FFE-tap Gm cells adopt the 
same design

• A cascode topology is selected to improve the 
breakdown voltage

• RDG for linearity enhancement
• MDG for gain tunning
• The Gm cells are connected to the input and 

output TLs using metal-3 (M3) layer

53/60



Design Under Test

2nd Pre-tap 1st Pre-tap

2nd Post-tap 1st Post-tap

Main Tap Main Tap

Main Tap Main Tap

Main 
Tap

0.
65

 m
m

1.30 mm

Cross-folded TLs

Output Ter. 
Resistors

Input Ter. 
Resistors

• The distributed driver is fabricated in 130-nm SiGe BiCMOS with fT/fmax of 250/340 GHz
• The RF signals are probed using 67-GHz SGS probe during measurement
• All other signals are wire-bonded to the evaluation board
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Measurement Setups
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Measurement Results
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• With FFE off, a DC gain of 15.8dB, a 3-dB BW of 24.5GHz, and a 6-dB BW of 53.4GHz are achieved
• With FFE on, a DC gain of 10dB, a 3-dB BW of >67GHz, and a peaking gain of 6.9dB@50GHz are achieved
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Measurement Results

2.98ps 960mV

56Gbaud, PRBS13, FFE Off

2.98ps 900mV

56Gbaud, PRBS13, FFE Off

RLM: 95.4%

2.08ps 900mV

80Gbaud, PRBS13, FFE Off

2.08ps 780mV

80Gbaud, PRBS13, FFE On

RLM: 95.8%

1.67ps 1.05V

100Gbaud, PRBS13, FFE Off

100Gbaud, PRBS13, FFE On

• The driver is capable of outputting 3.8-Vppd 160-Gb/s PAM-4 and 4.0-Vppd 100-Gb/s NRZ signals
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Comparison with Prior Works
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Conclusions

For multi-mode optical links
• Proposes a VCSEL transmitter with piecewise compensation scheme,

effectively enhances the optical eye opening, achieves 56-Gb/s PAM-4
with 2.05-pJ/bit energy efficiency

For single-mode optical links
• Proposes a linear modulator transmitter with AMUX-FFE and large-

swing driver, achieves 2-to-1 analog serialization, reconfigurable 3-tap
FFE, 7.3-Vppd maximum swing, and 4.2-Vppd 112-Gb/s PAM-4 outputs

• Proposes a linear distributed modulator driver with cross-folded
transmission lines and cross-coupled Gm cells, achieves 5-tap built-in
FFE and 3.8-Vppd 160-Gb/s PAM-4 output
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