

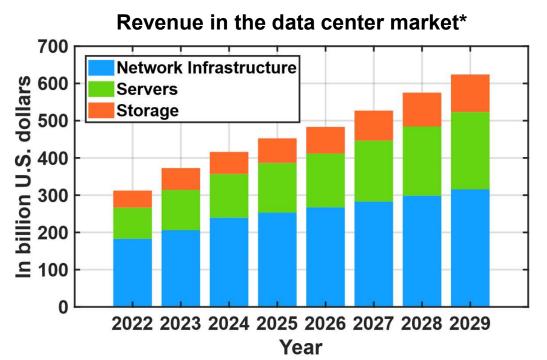
Energy-Efficient CMOS Optical Receiver for Short-Reach Data Center Application

Chongyun Zhang

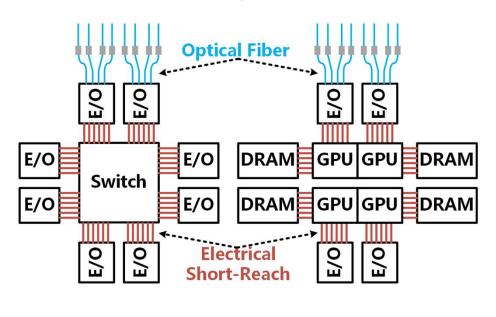
Thesis supervisor: Prof. C. Patrick Yue

June 13, 2025

Optical Wireless Lab


Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology (HKUST)

Outline


- Background
- PAM-4 Optical Receiver Data Path
- PAM-4 Optical Receiver Front End
- Conclusion

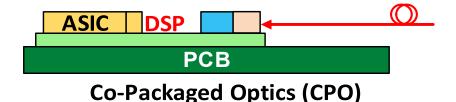
Research Background

- Data center networks keep scaling in BW and physical size
- Optical interconnects offer enhanced traffic capacity and reduced power consumption
- Further scaling of efficiency and density remains challenging due to limited integration in optical modules

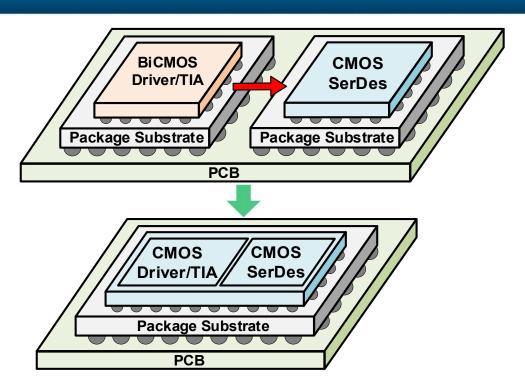
Network switch arrays with E/O interfaces

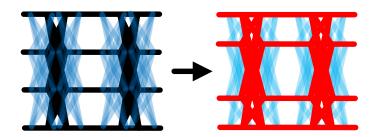
(*Revenue in the Data Center market for different segments Worldwide from 2018 to 2029 [Graph], Statista Market Insights, July 22, 2024. [Online]. Available: https://www.statista.com/forecasts/1441973/revenue-data-center-market-for-different-segments-worldwide.)

Development Trend in Optical Interconnect

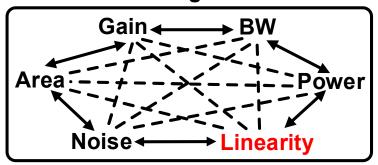

Intensity-Modulation Direct-Detection (IMDD) Optical Link

Retimed Pluggable Optics (RPO)


- High power consumption from DSP chips
- Increase of frequency-dependent losses in PCB
- · Heavy cost and power from SiGe BiCMOS front end

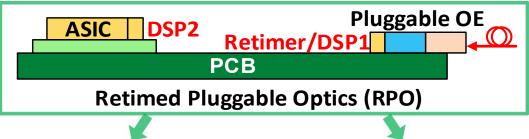

Linear Pluggable Optics (LPO)

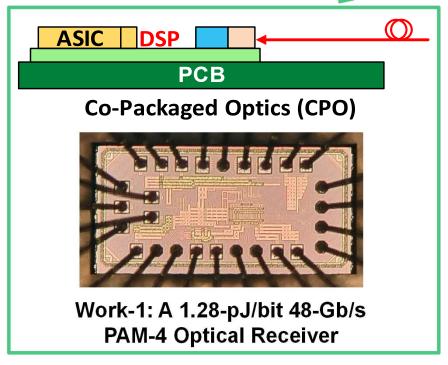
Design Challenges

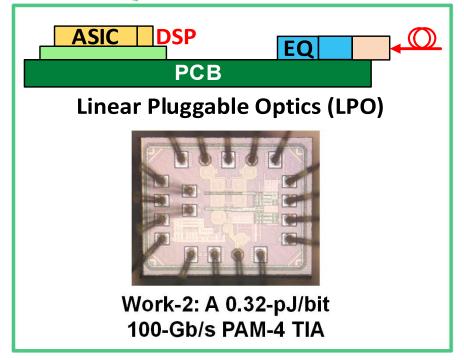


Integration of front-end transceivers in CMOS

- Lower f_T and intrinsic gain
- Worse noise performance
- Limited supply voltage

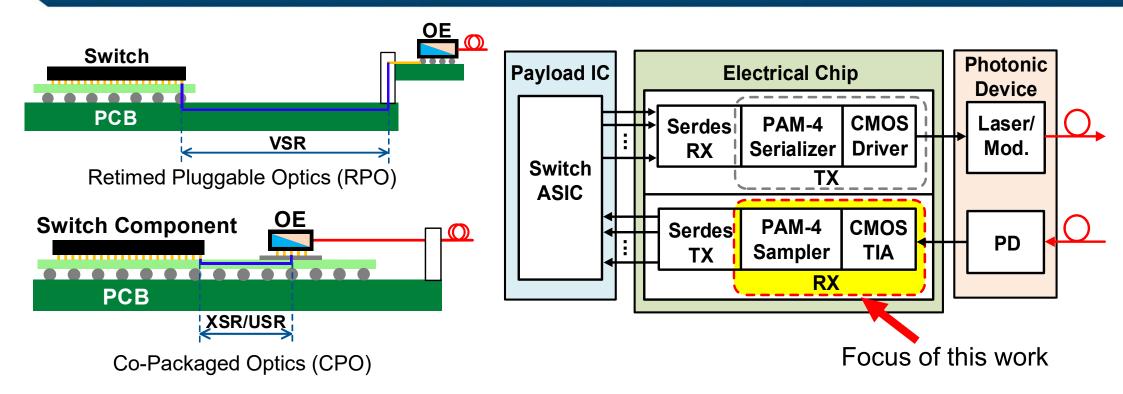

PAM-4 Design Tradeoffs



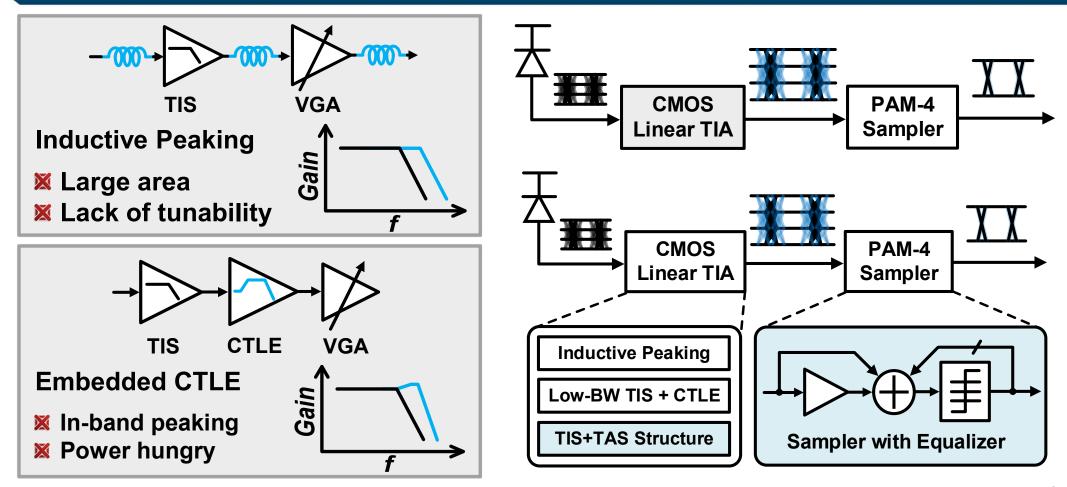

Adoption of four-level pulse amplitude modulation (PAM-4)

- ~9.5 dB worse signal-to-noise ratio (SNR)
- Higher linearity to preserve four symbols

Research Scope

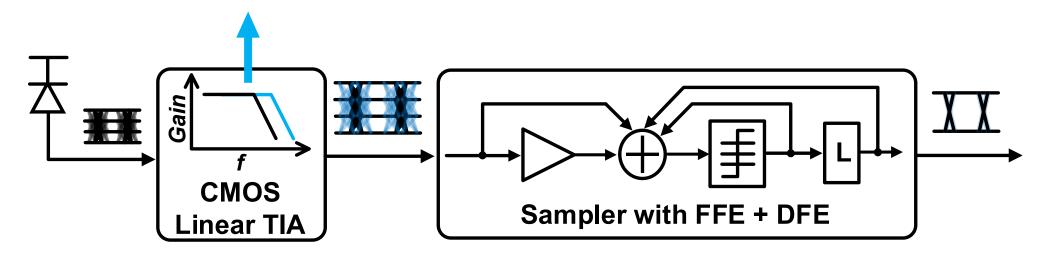


Outline

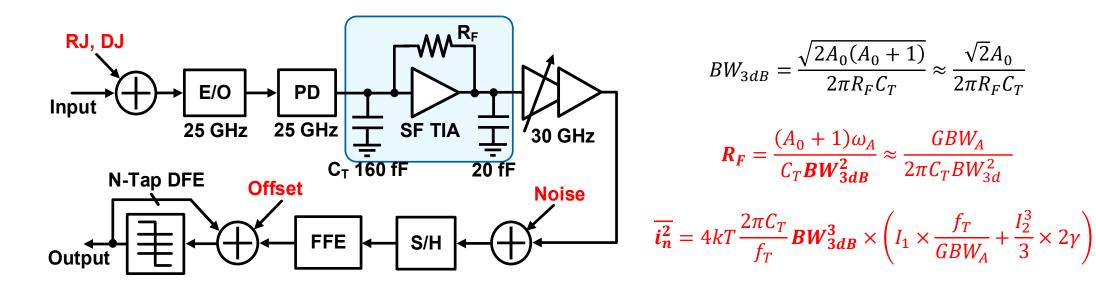

- Background
- PAM-4 Optical Receiver Data Path
 - System Architecture
 - Implementation
 - Measurement Result
- PAM-4 Optical Receiver Front End
- **)** Conclusion

Data Center Optical Interconnect

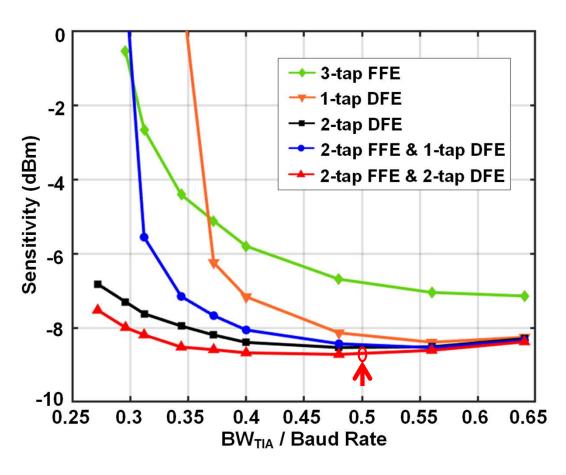
- Integrating TIA and sampler (deserializer) reduces the overhead and electrical connections
- Low power consumption and low cost for 50-Gb/s link


Design Challenges

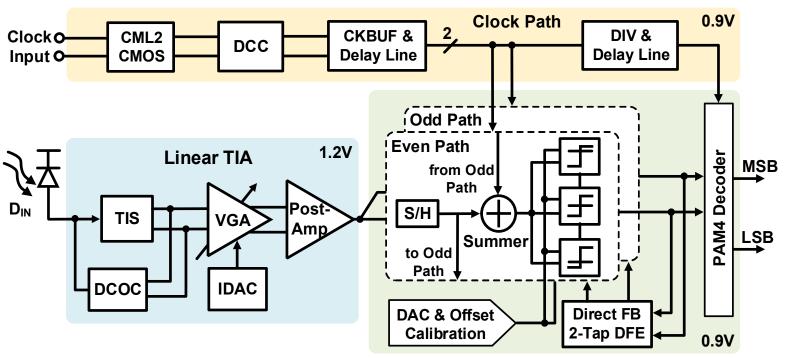
TIS: transimpedance amplifier; VGA: variable gain amplifier; CTLE: continuous-time linear equalizer


RX Architectural Consideration

- CTLE is avoided to save power
- Passive inductors are avoided to save area
- Transadmittance-stage transimpedance-stage (TAS-TIS) topology is employed


Equalizers are integrated at sampler to mitigate the residual ISI of TIA

RX Architectural Consideration


- ORX link model to evaluate post-TIA equalization
- TIA model with a second-order flat response

RX Architectural Consideration

- BW_{TIA} < 0.45x baud rate, sensitivity is limited by ISI
- BW_{TIA} > 0.45x baud rate, sensitivity is limited by noise
- A combination of a 2-tap FFE and a 2-tap DFE delivers the best overall sensitivity
- Optical receiver (ORX) is designed with a BW_{TIA} of ~0.5x baud rate, followed by a 2-tap FFE and a 2-tap DFE

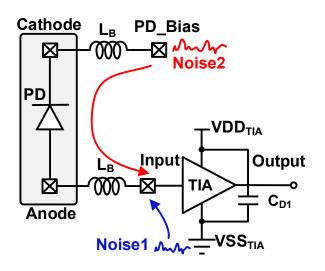
Proposed Architecture

Linear TIA

- >73 dBΩ maximum gain
- >20 dB dynamic range
- Compact and energy-efficient

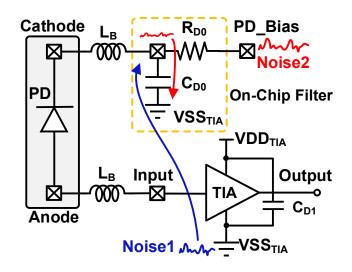
■ PAM-4 sampler

- Half-rate structure
- 2-tap FFE + 2-tap DFE

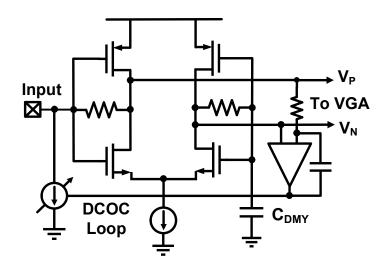

Clock path

- External differential clock
- Voltage-controlled delay line
- Divider (DIV)

Outline


- Background
- PAM-4 Optical Receiver Data Path
 - System Architecture
 - Implementation
 - Measurement Result
- PAM-4 Optical Receiver Front End
- **Conclusion**

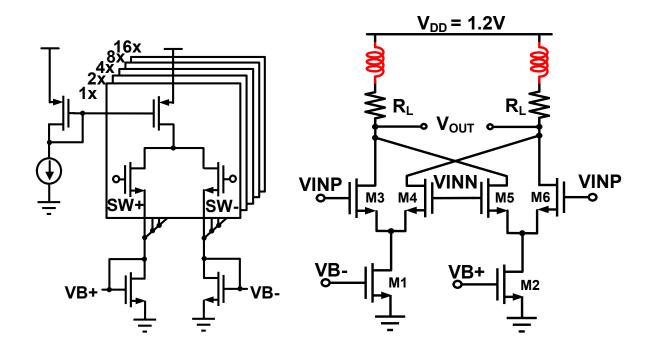
PD Interface and TIS


Direct connection scheme

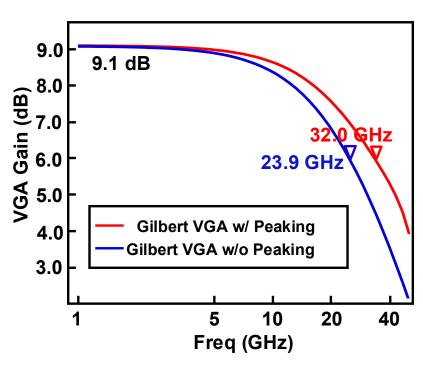
- ✓ Simple and save pads
- Noise at VSS_{TIA} and PD bias affects the single-ended input signal

On-chip connection scheme

- ✓ Enhanced ground noise rejection by ac-coupled VSS_{TIA} and PD cathode
- ✓ R_{D0} and C_{D0} provide onchip filtering for noise2



Schematic of TIS with DCOC


- Pseudo-differential push-pull TIS provides single-todifferential conversion
- Current tail for better supply noise rejection

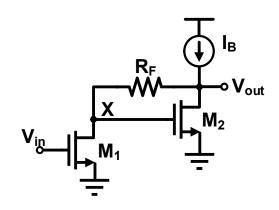
15

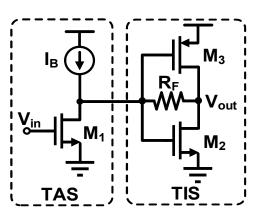
Gilbert-Cell-Based VGA

- 5-bit current DAC for Gm control
- Gain = Gm*R_L fixed load impedance: R_L
- Shunt peaking required to expand BW

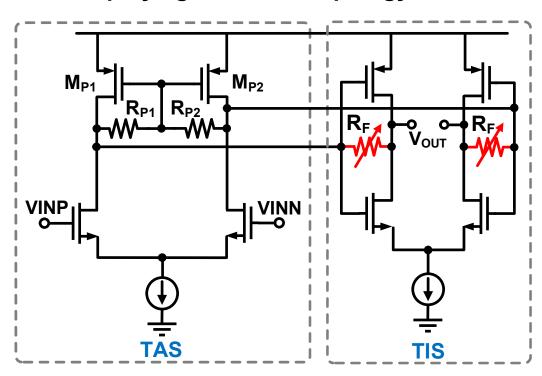
 Two 580-pH inductors required to expand the BW to 32 GHz

VGA Employing TAS-TIS Topology

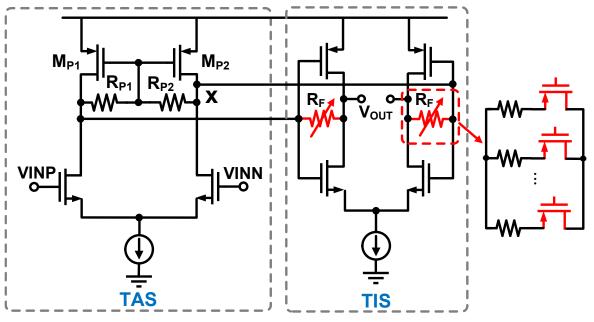

Cherry-Hooper Amp


•
$$Z_X \approx \frac{1}{g_{m2}}$$

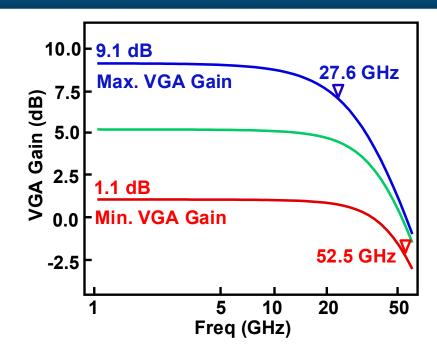
•
$$Z_{out} \approx \frac{1}{g_{m2}}$$


TAS-TIS topology

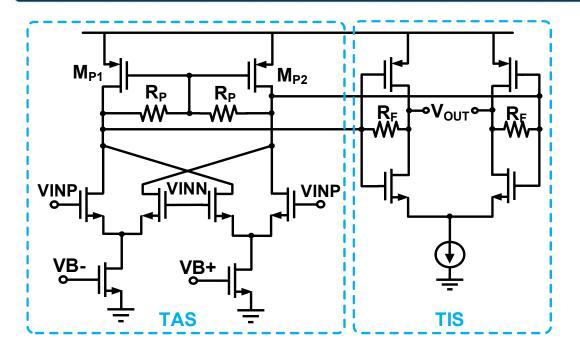
- Modified Cherry-Hooper Amplifier
- Split into two stages:
 TAS and TIS

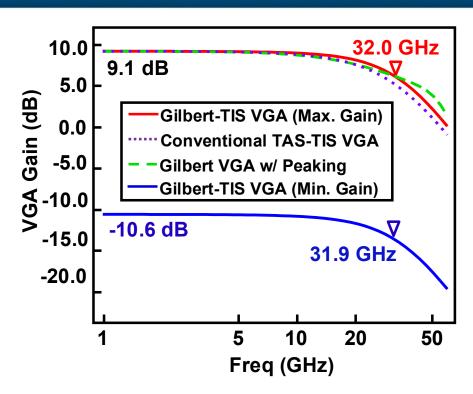


VGA employing a TAS-TIS topology


TAS: transadmittance stage TIS: transimpedance stage

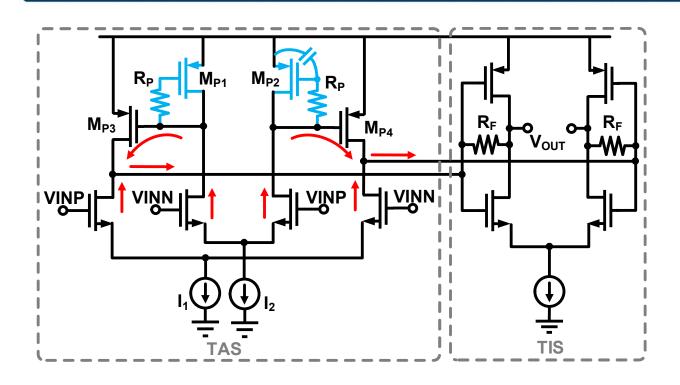
VGA Employing TAS-TIS Topology

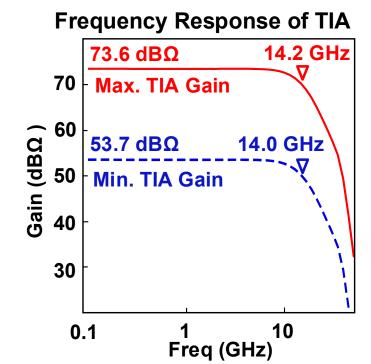



- Load impedance of TAS: R_F/A_{TIS} , higher BW
- Output impedance: $1/Gm_{TIS}$, larger driving capacity
- Variable R_F causes BW variations over gain variations
- Switches for R_F control bring extra parasitics

- 3-bit TAS-TIS VGA
- 8-dB gain tuning range
- ~25-GHz BW variation

Proposed Gilbert-TIS VGA

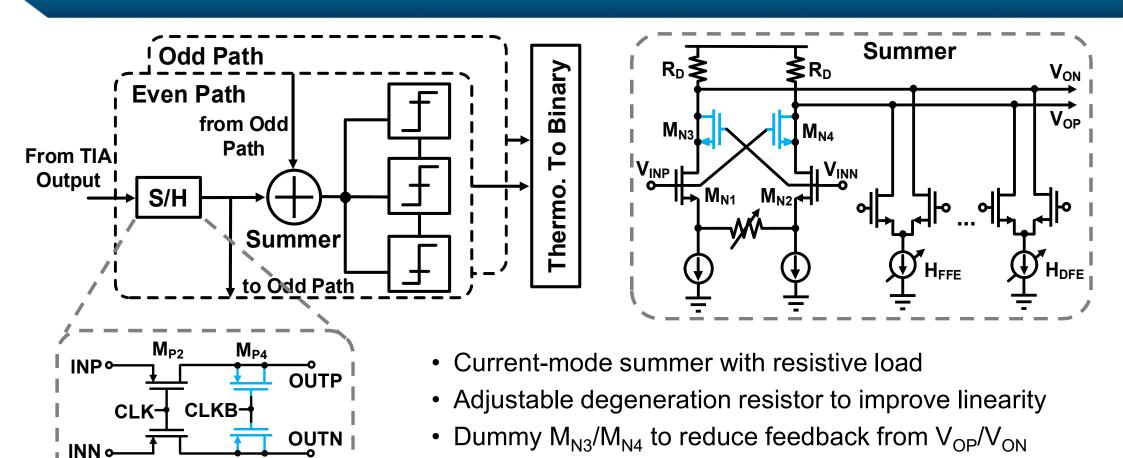



- Load impedance of TAS: R_F/A_{TIS}, higher BW
- Output impedance: $1/Gm_{TIS}$, larger driving capacity
- Fixed R_F mains a constant BW over gain variations
- CML-based TAS to get fully differential signal

- High gain-BW product
- <0.2-GHz BW variation

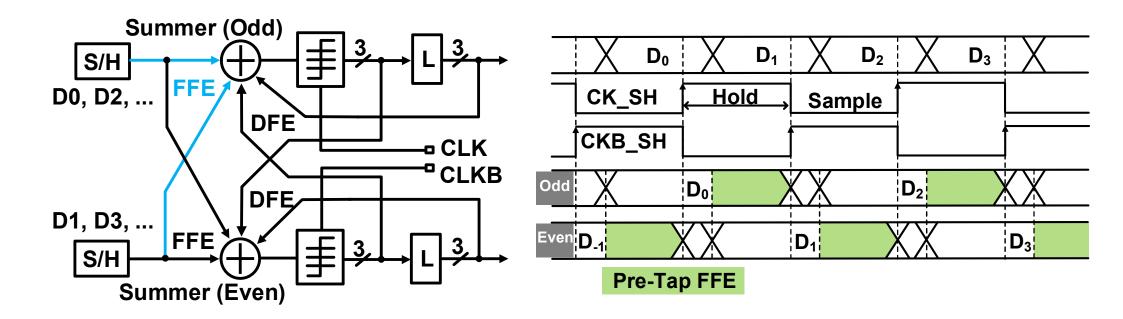
Post-Amp Design and TIA Frequency Response

- TAS-TIS topology
- Two differential pairs to achieve high Gm_{TAS}
- R_P, M_{P1}, M_{P2} form active inductors to expand BW

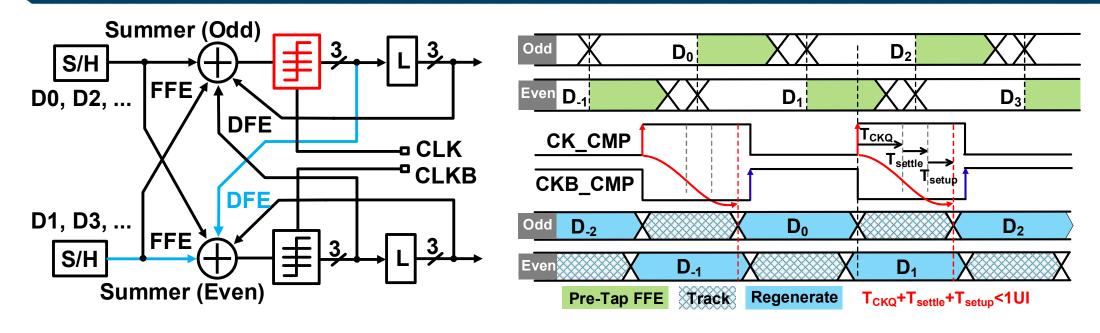


- TIA achieves 73.6-dBΩ max. gain with 14.2-GHz BW
- < 0.3 GHz BW variation

Sampler with Integrated Equalizer

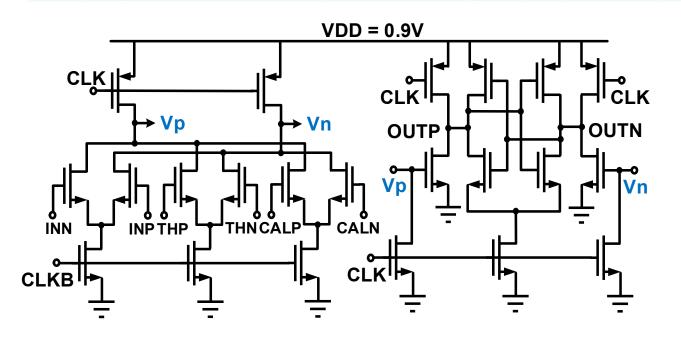

 M_{P1}

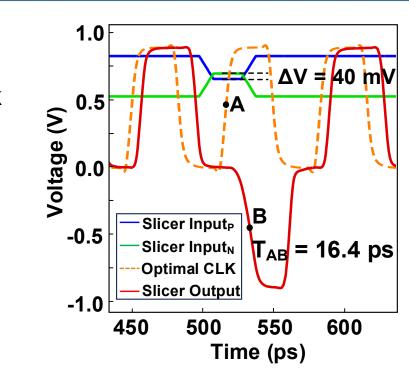
 M_{P3}


• Dummy M_{P3}/M_{P4} to mitigate clock through from M_{P1}/M_{P2}

FFE and Summer Timing Diagram

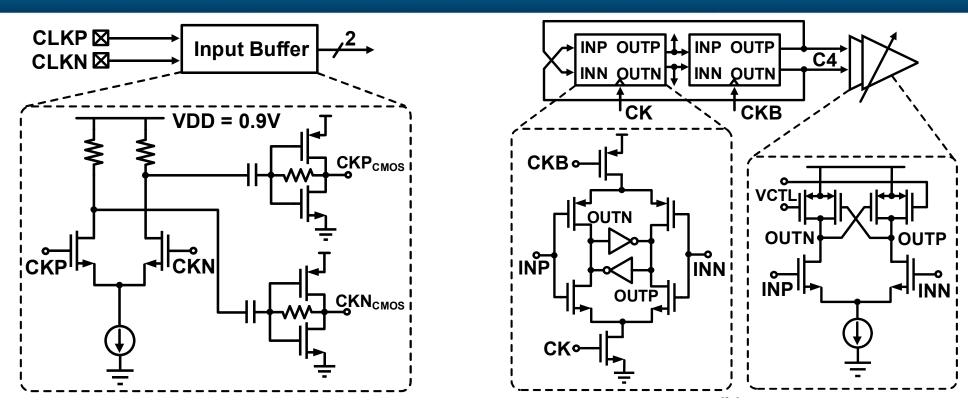
- Data is sampled and held for 1 UI by S/H circuits using CK_SH and CKB_SH alternatively
- Data in the even path experiences an 1-UI delay relative to the odd path
- 0.5-UI precursor of D₁ is cancelled by subtracting D₂ from D₁

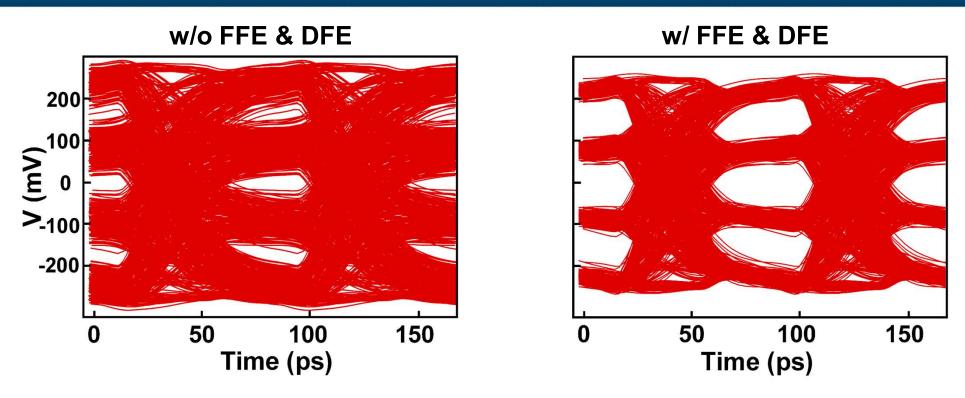

DFE and Summer Timing Diagram



- Before D₁ is sliced by the rising edge of CK_CMP, D₀ must be regenerated and subtracted from D₁
- Stringent timing constrain to close decision feedback loop for the first tap
- 1-UI < 42ps for 48-Gb/s PAM-4 operation
- The delay performance of slicers is critical: reduce T_{CKQ}

UI: unit interval

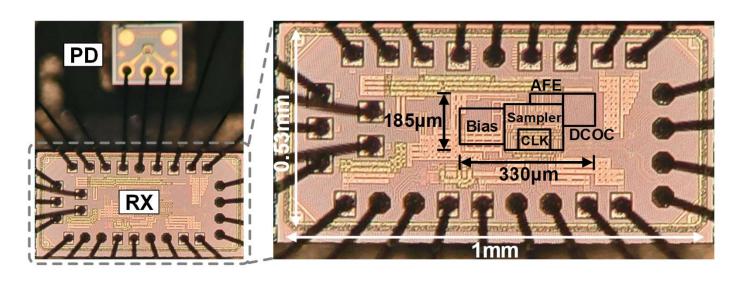

Track-and-Regenerate Slicer

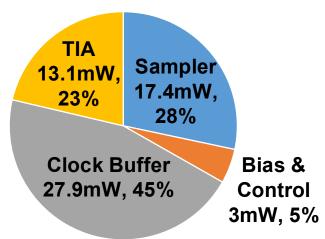

- Track-and-regenerate slicer
- CLK=0, CLKB=1, input tracked by Vp and Vn, latch is charged to V_{DD}
- CLK=1, CLKB=0, Vp and Vn discharged to V_{SS}, latch regenerates signal
- Optimized clock-to-Q delay, < 17ps

Clock Path

- CML to CMOS clock buffer amplifies sinusoidal clock signals to rail-to-rail
- C²MOS frequency divider is used to provide clock signals for PAM-4 decoder
- Delay line controlled by a 6-bit R2R ladder is used to accommodate delay variations

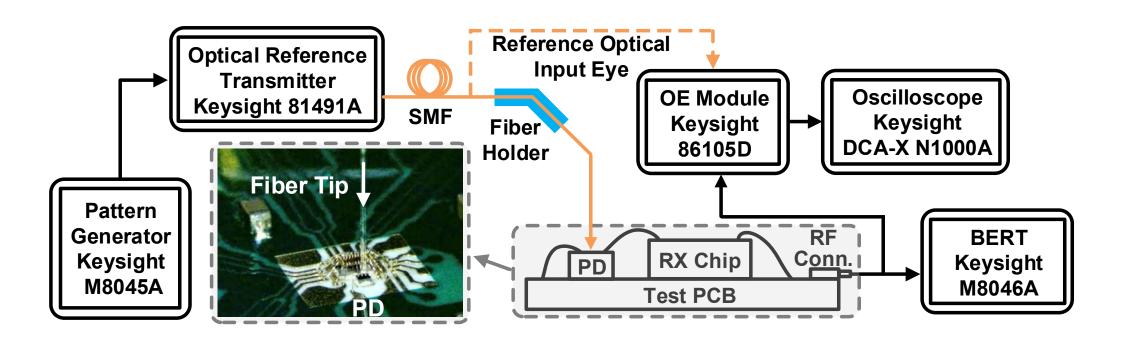
Simulated Eye Diagram at Summer Output

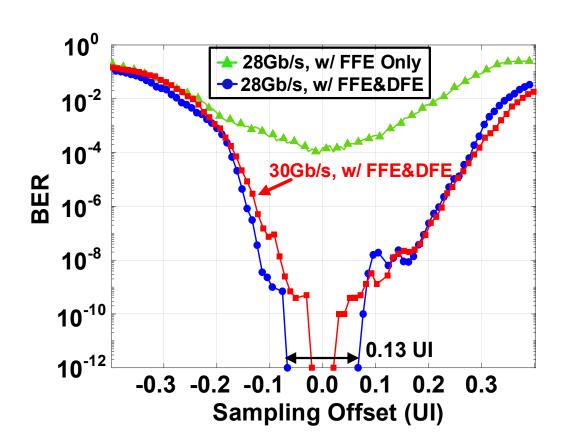



- 48-Gb/s PAM-4 input with 220-uA amplitude, 70-fF PD, 1.5-ps RJ
- Eye diagrams of half-rate 24-Gb/s PAM-4 at summer output before decoding
- Coefficients of FFE, first-tap DFE, second-tap DFE: 0.07, 0.08, 0.01

Outline

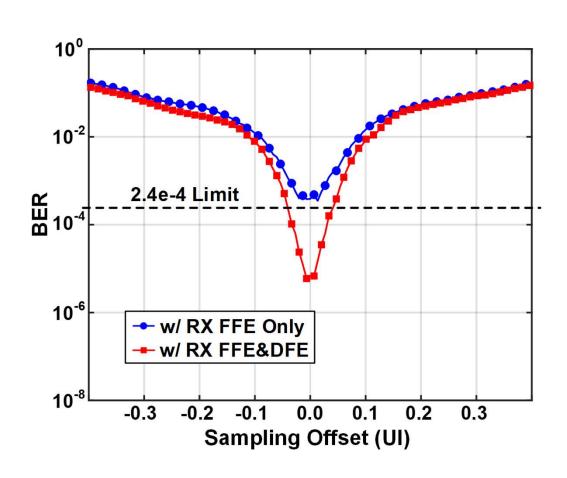
- Background
- PAM-4 Optical Receiver Data Path
 - System Architecture
 - Implementation
 - Measurement Result
- PAM-4 Optical Receiver Front End
- **)** Conclusion


Die Photo and Power Breakdown


- Fabricated in a 28-nm bulk CMOS
- ~0.06 mm² core area for ORX
- Wire-bonded to a 27-GHz PD with 0.75-A/W responsivity
- 61.4 mW at 48-Gb/s in total, TIA contributing 13.1 mW

Measurement Setup

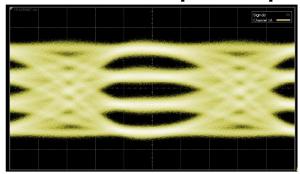
- 1308-nm light source is coupled to PD through a single-mode fiber
- Optical power level is adjusted by an internal optical attenuator
- Deserialized MSB and LSB are sent to off-chip BER testing


NRZ BER Bathtub Curves

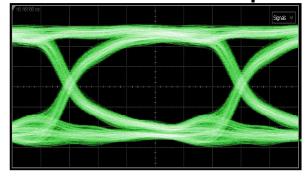
NRZ input signal

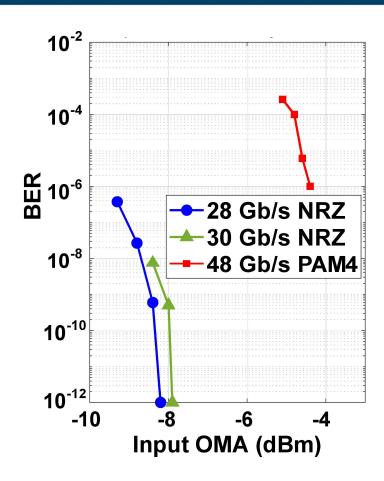
- All data slicers are enabled without PAM-4 threshold voltages
- 28-Gb/s NRZ input with -8.0-dBm input OMA
- 30-Gb/s NRZ input with -7.7-dBm input OMA
- 1e-12 BER at 30-Gb/s validate slicer design and DFE operation

PAM-4 BER Bathtub Curves



PAM-4 input signal


- 48-Gb/s PAM4 with -4.6-dBm input OMA
- Only enabling FFE, BER is higher than pre-FEC limit
- After enabling both FFE and DFE, BER is improved to < 1e-5

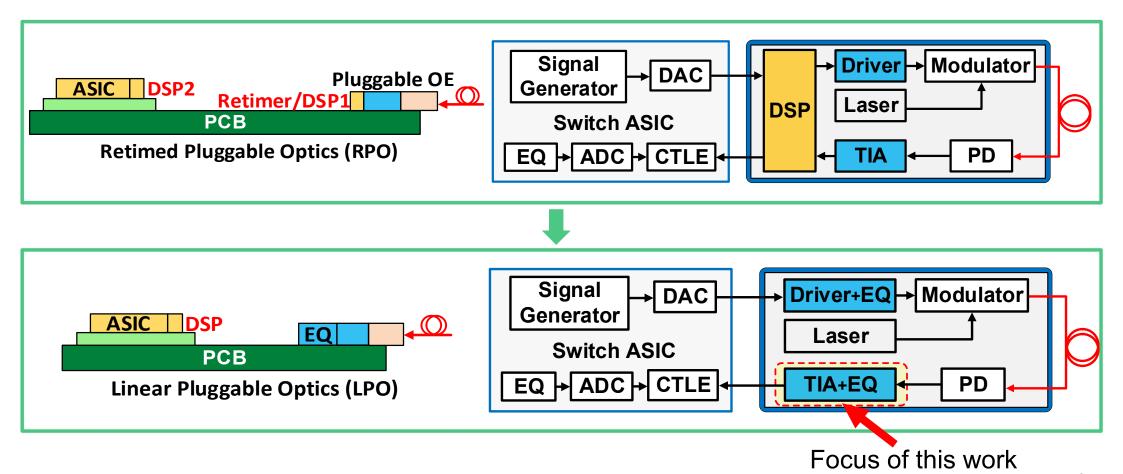

ORX Sensitivity

48-Gb/s PAM4 Optical Input

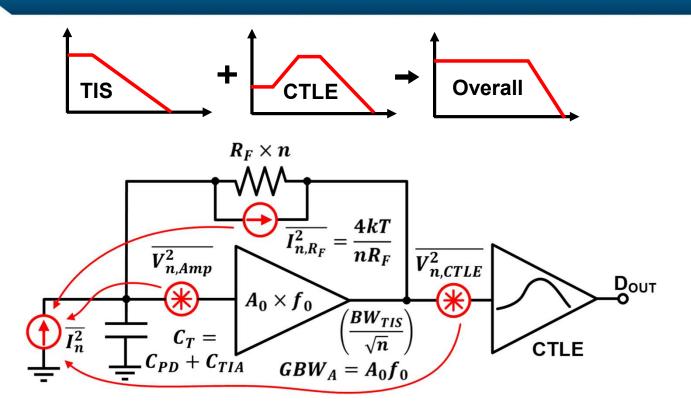
Decoded 6-Gb/s Output

- PAM-4 optical input with
 4.8-dB extinction ratio
- Under 1e-12 BER target,
 -8.2-dBm sensitivity at 28 Gb/s NRZ is achieved
- Under 2.4e-4 BER target,
 -5.1-dBm sensitivity at 48 Gb/s PAM-4 is achieved

Comparison Table


	JSSC'21 [1]		OJCAS'21[2]	JSSC'22 [3]		RFIC'23 [4]	VLSI'24 [5]		This Work	
Technology	65nm CMOS		40nm CMOS	28nm CMOS		28nm CMOS	22nm FinFET		28nm CMOS	
Data Rate (Gb/s)	16 (Duobinary)		36 (PAM-4)	100 (PAM-4)		42.7 (NRZ)	50 (NRZ)		48 (PAM-4)	
PD Capacitance (fF)	180		100	100 70		N/A	100		60	
PD Responsivity (A/W)	0.8		8.0	1		0.8	0.48		0.75	
NRZ OMA Sens. at BER 1e-12 (dBm)	-11.6		N/A	-11.1 @56Gb/s		-3.6	-6		-8.2 @28Gb/s	
PAM-4 OMA Sens. at BER 2.4e-4 (dBm)	N/A		-4.8*	-8.9		N/A	N/A		-5.1	
RX EQ Capabilities	N/A		2-tap DFE	2-tap FFE + 2-tap DFE		CTLE	CTLE + 2-tap FFE		2-tap FFE + 2- tap DFE	
Area (mm²)	0.09		0.23	0.45		0.11**	0.32 (TIA + RX)		0.06	
Power (mW)	4.0 (TIA)	11.2 (ORX)	128.8 (RX)	117 (TIA)	381 (RX)	145.2** (RX)	15.8 (TIA)	75.9 (ORX)	13.1 (TIA)	61.4 (RX)
Efficiency (pJ/bit)	0.25	0.7	4.0	1.17	3.9	3.4	0.38	1.5	0.27	1.28
FoM (Gbps/mm²/mW)	2570		473	1725		889	622		2589	

^{*}Estimated from reported sensitivity curve **CDR included

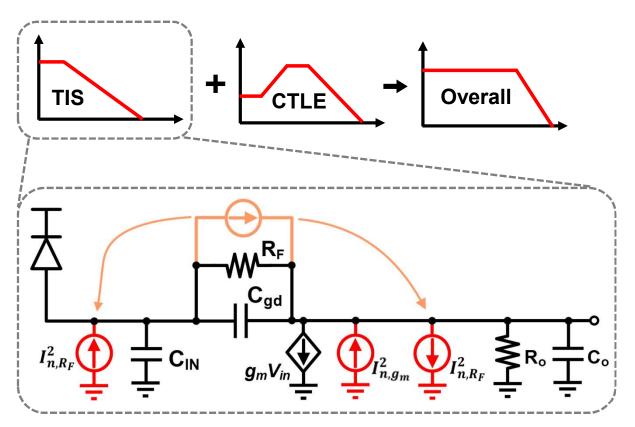

Outline

- Background
- PAM-4 Optical Receiver Data Path
- PAM-4 Optical Receiver Front End
 - System Architecture
 - Implementation
 - Measurement Result
- Conclusion

Motivation

Architectural Consideration

$$R_{F} = \frac{(A_{0} + 1)\omega_{A}}{C_{T}BW_{TIS}^{2}} \approx \frac{GBW_{A}}{2\pi C_{T}BW_{TIS}^{2}}$$


$$\overline{i_{n,TIS|CTLE}^{2}}(f) = \frac{4kT}{R_{F}n} + \frac{4kT\gamma}{g_{m}R_{F}^{2}n^{2}} + 4kT\gamma \times \frac{(2\pi C_{T})^{2}}{g_{m}}f$$

$$\overline{i_{n,TIS}^{2}}(f)$$

$$+ \frac{4kT\gamma}{g_{m,eq}R_{F}^{2}n^{2}} + \frac{4kT\gamma}{g_{m,eq}R_{F}^{2}} \left(\frac{f}{BW_{TIS}}\right)^{4}$$

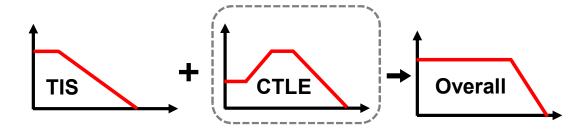
$$\overline{i_{m,eq}^{2}R_{F}^{2}n^{2}} + \frac{g_{m,eq}R_{F}^{2}}{g_{m,eq}R_{F}^{2}} \left(\frac{f}{BW_{TIS}}\right)^{4}$$

- Low-BW TIS + CTLE is used to beak the BW-noise trade-off
- Increasing n reduces white noise terms, while f^2 and f^4 color noise terms remain unchanged
- Large scaling factor n resulting in reduced BW_{TIS} , necessitating higher peaking from CTLE

• I_{n,R_F}^2 is split at TIS input and output

TIS transfer function

$$\mathbf{Z}_{TIS}(\mathbf{s}) = \frac{-R_o(g_m \mathbf{n} R_F - 1 - s C_{gd} \mathbf{n} R_F)}{1 + g_m n R_F + s K_1 + s^2 K_2}$$


TIS output impedance

$$\mathbf{Z}_{o}(\mathbf{s}) = \frac{R_{o}[1 + s\mathbf{n}R_{F}(C_{gd} + C_{IN})]}{1 + g_{m}\mathbf{n}R_{F} + sK_{1} + s^{2}K_{2}}$$

$$K_1 = C_{IN}(R_o + nR_F) + C_oR_o + C_{gd}nR_F(1 + g_mR_o)$$

$$K_2 = nR_FR_o(C_{IN}C_o + C_{IN}C_{gd} + C_{gd}C_o)$$

Noise PSD at TIS output

$$S_{TIS,out}(s) = I_{n,R_F}^2 |Z_{TIS} - Z_o|^2 + I_{n,g_m}^2 |Z_o|^2$$

Transfer function of an ideal unity-gain CTLE stage that recovers the full BW

$$H_{CTLE}(s) = \frac{1 + g_m R_F + s K_1 + s^2 K_2}{(1 + g_m R_a) \left(1 + \frac{s}{nQ2\pi f_{TIS}} + \frac{s^2}{(n2\pi f_{TIS})^2}\right)}$$

Zeros of CTLE cancel the poles of TIS

$$\mathbf{Z_{TIS}}(\mathbf{s}) \times \mathbf{H_{CTLE}}(\mathbf{s}) = \frac{-R_o \left(g_m \mathbf{n} R_F - 1 - s C_{gd} \mathbf{n} R_F \right)}{(1 + g_m R_a) \left(1 + \frac{s}{\mathbf{n} Q 2\pi f_{TIS}} + \frac{s^2}{(\mathbf{n} 2\pi f_{TIS})^2} \right)} \qquad \mathbf{V_{noise,out}} = \sqrt{\int_0^\infty S_{CTLE,out}(\mathbf{s}) df}$$

Noise PSD at CTLE output

$$S_{CTLE,out}(s) = I_{n,R_F}^2 |(Z_{TIS} - Z_o) \times H_{CTLE}|^2 + I_{n,g_m}^2 |Z_o \times H_{CTLE}|^2$$

Thermal noise of feedback resistor R_F

$$I_{n,R_F}^2 = 4kT/\mathbf{n}R_F$$

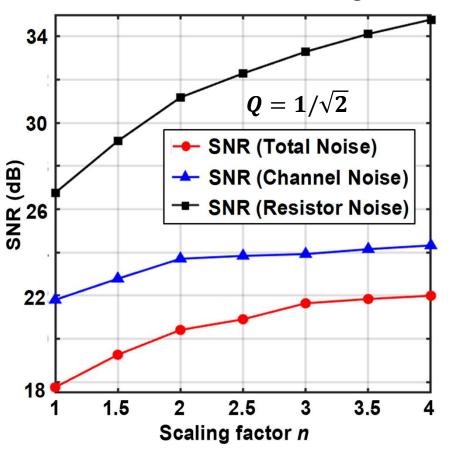
Channel thermal noise

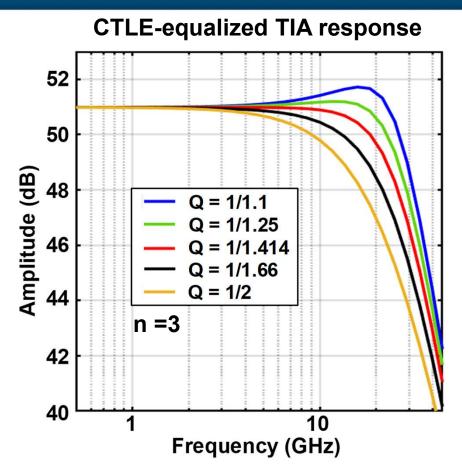
$$I_{n,g_m}^2 = 4kT\gamma g_m$$

RMS noise at CTLE output

$$V_{noise,out} = \sqrt{\int_0^\infty S_{CTLE,out}(s)df}$$

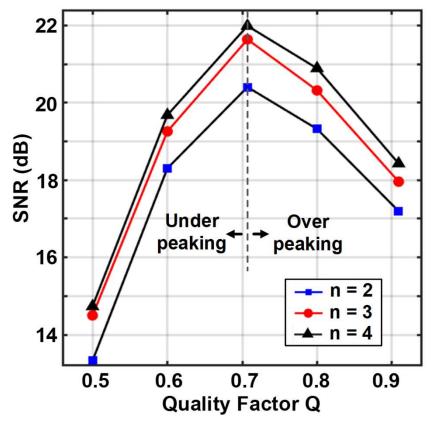
SNR at CTLE-equalized TIA output

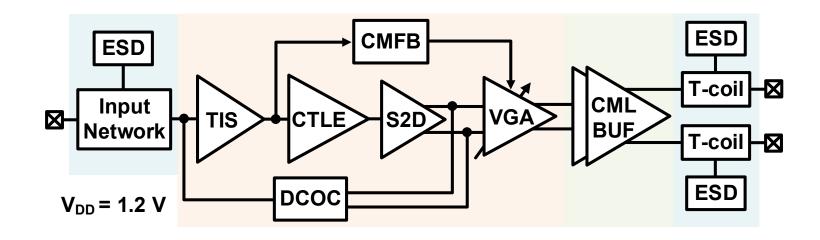

$$SNR = 20log_{10} \left(\frac{V_{ISI}}{V_{n,out}} \right)$$


• Worst eye opening V_{ISI} is calculated from the main cursor V_0 and the i_{th} cursors V_i

$$V_{ISI} = |V_0| - 3\sum_{i \neq 0} |V_i|$$

- SNR improves as n increases
- n > 3, color noise component dominated
- White noise is suppressed, while the color noise is not affected

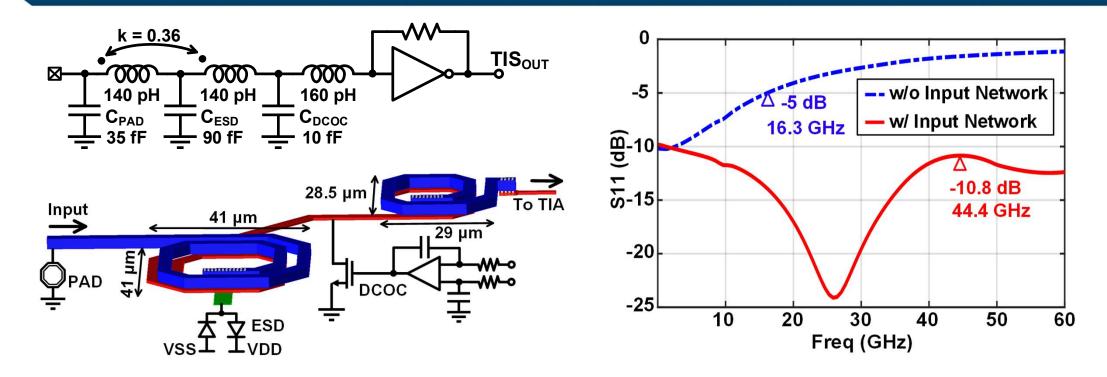

SNR as a function of R_F scaling factor n


CTLE over/under-peaking affects TIA noise

SNR as a function of quality factor Q

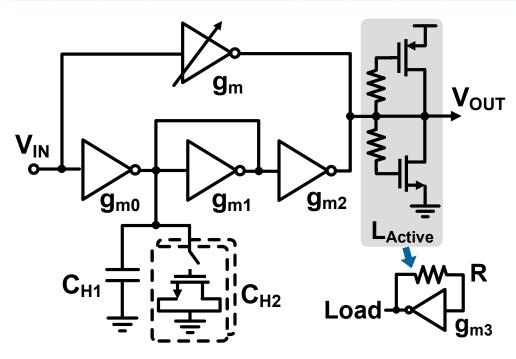
Q variation < 15%, degradation < 2.5 dB

Proposed Architecture



- $n = \sim 3.5$ to obtain a large TIS gain and eliminate the post-amplifier
- Gain and middle/high-frequency peaking of the CTLE are tunable
- S2D conversion is put after the single-ended CTLE instead of the TIS
- T-coils are integrated to optimize return loss and relieve BW degradation from ESD

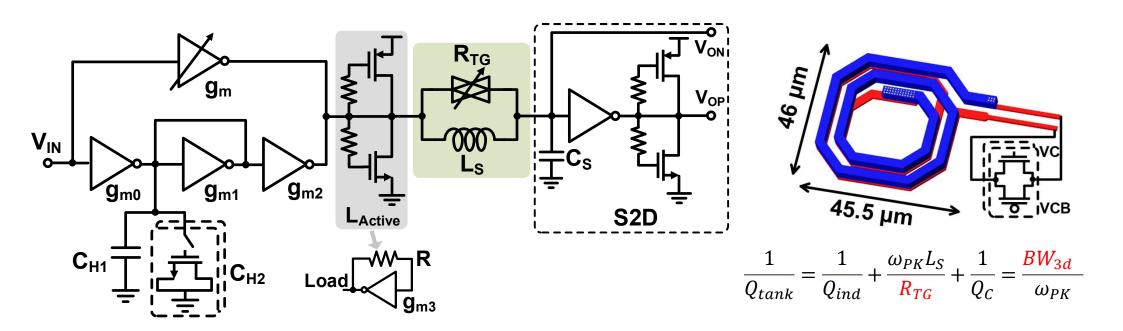
Outline


- Background
- PAM-4 Optical Receiver Data Path
- PAM-4 Optical Receiver Front End
 - System Architecture
 - Implementation
 - Measurement Result
- Conclusion

TIS with Multi-Peaking Input Network

- Multi-peaking input network to distribute parasitic capacitance
- Multi-layer stacked T-coil and inductor are custom designed
- Good broadband impedance matching under heavy capacitive loading achieved

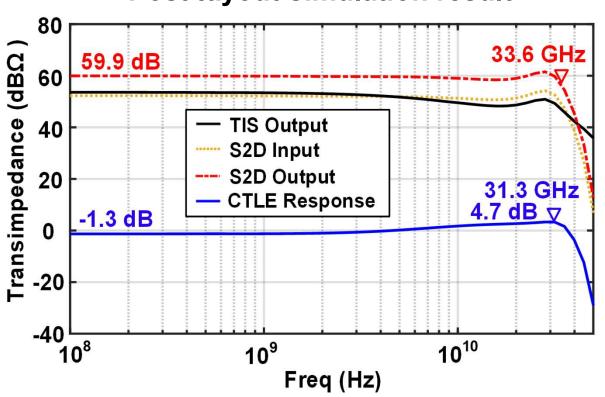
Single-Ended Inverter-Based CTLE



- Gm-C filter create one pole at $g_{m1}/(C_{H1}+C_{H2})$
- CTLE response

$$\begin{split} H(s) &= [H_{M}(s) - H_{L}(s)] \cdot L_{Active} \\ &= \left[g_{m} - \frac{g_{m0}g_{m2}}{g_{m1}} \cdot \frac{1}{1 + s\left(C_{H1} + C_{H2}\right)/g_{m1}} \right] \cdot \frac{sRC_{gs}}{2g_{m3}} \end{split}$$

- High f_T of PMOS in deep sub-micron CMOS technologies
- CTLE engages two parallel paths: main and low-pass paths
- · Peaking is created by subtracting the low-pass path from the main path
- 3-bit dc gain control and 2-bit middle-frequency (MF) tuning implemented


CTLE with Q-Shaping Inductor

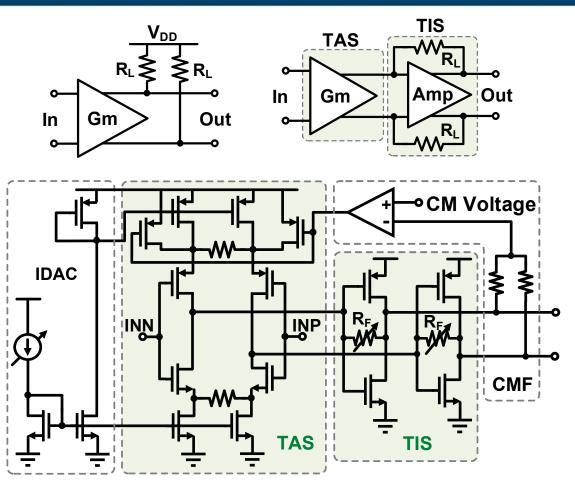
- Accommodate BW variation of TIA caused by bond wires and input capacitance
- Tunable Q: programmable transmission gate R_{TG} in parallel with a 670-pH inductor L_s
- S2D circuit is implemented by a unity gain buffer with active inductor load

Simulated Frequency Response

Post-layout simulation result

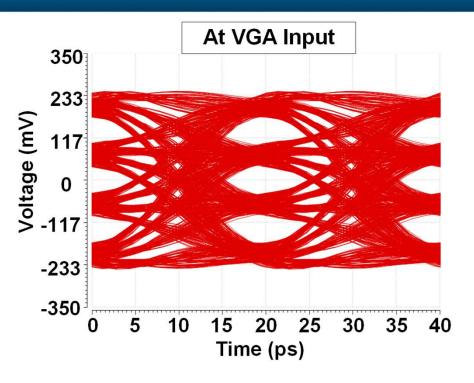
At TIS output:

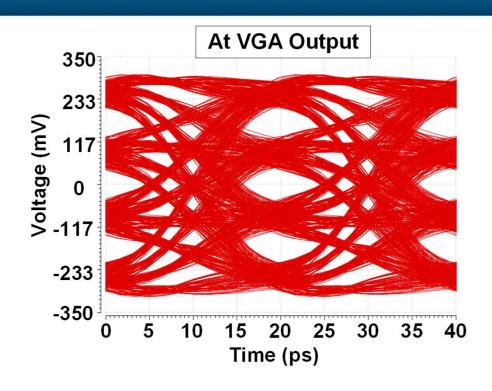
- 53.6 dB Ω with BW_{3dB} of 7.1-GHz
- BW_{6dB} of 15.1 GHz, 23.8 GHz and 33.7 GHz


CTLE response:

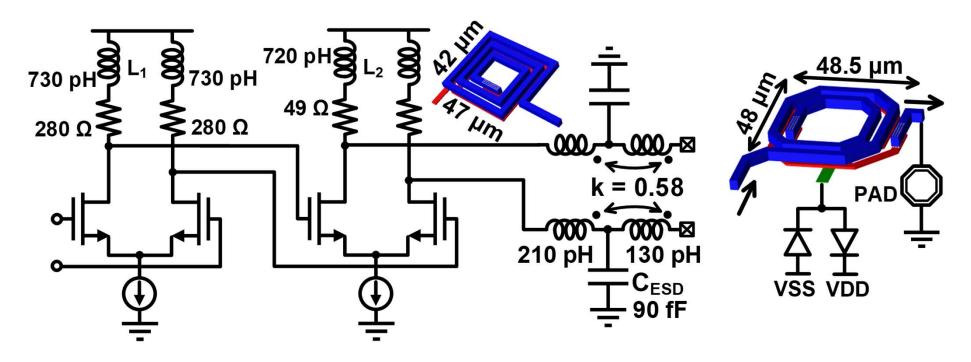
6-dB peaking at 31.3 GHz

At S2D output:


• 59.9 dB Ω with BW_{3dB} of 33.6 GHz

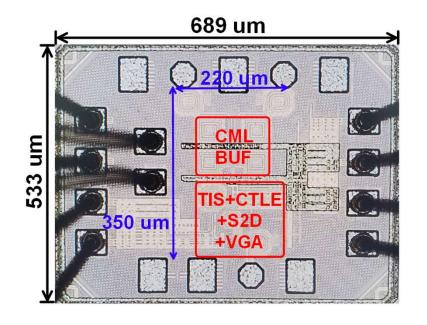

VGA Design

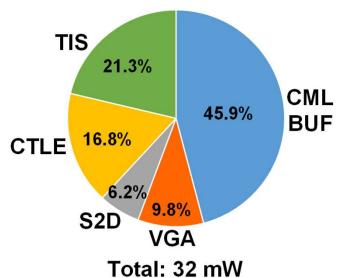
- NMOS- or PMOS-only input pairs exhibit compromised linearity
- CMOS input pairs of both TAS and TIS improve linearity
- Combine the tunability of both Gm and R_F 3-bit Gm control and 2-bit R_F control
- Tail current sources to improve immunity to supply variations and CM rejection
- Source degeneration resistor to further enhance linearity
- Gain: -2.4 dB to 7.3 dB


Simulated Eye Diagrams

- TIA input amplitude of 600 μA_{pp}
- Simulated 100-Gb/s PAM-4 eye diagrams at VGA input and output
- VGA output: ratio level mismatch (RLM) > 96%

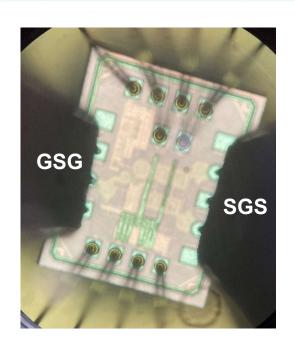
Output BUF Design

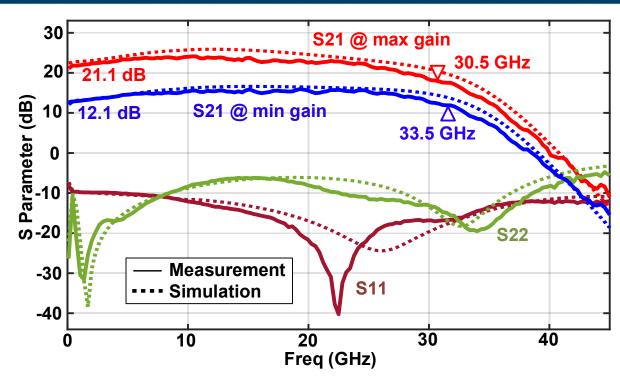



- Two cascaded differential pairs with shunt-inductive peaking to drive 50-Ω off-chip load
- Multi-layer stacked T-coils to accommodate ESD capacitance
- Buffer with T-coil and ESD diodes provides 0-dB gain with 42-GHz BW

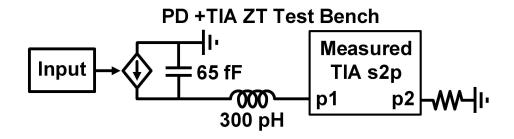
Outline

- Background
- PAM-4 Optical Receiver Data Path
- PAM-4 Optical Receiver Front End
 - System Architecture
 - Implementation
 - Measurement Result
- Conclusion


Die Photo and Power Breakdown

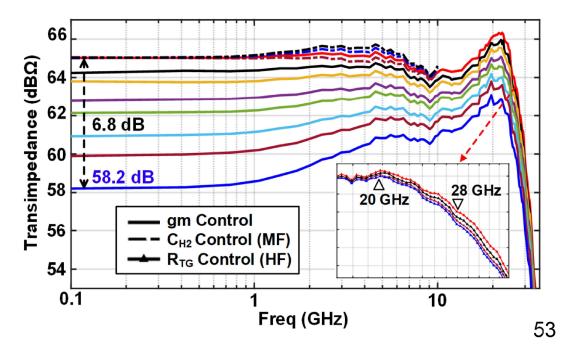


- Fabricated in a 28-nm bulk CMOS technology
- $0.69 \times 0.53 \text{ mm}^2$ area defined by the pad frame
- 32 mW power consumption including output buffer from a 1.2-V supply

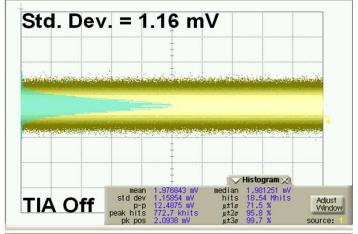

Small Signal Measurement: S-Parameter

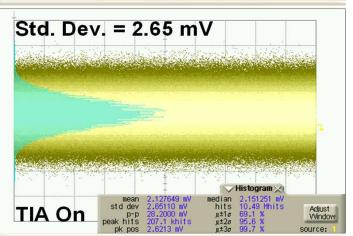
- Four-port S-parameter measurement up to 50 GHz
- S21: maximum gain of 21.1 dB with a BW of 30.5 GHz
- S11 and S22 lower than -6 dB up to 40 GHz

Small Signal Measurement: Transimpedance


Current Tuning

Resistor Tuning


10

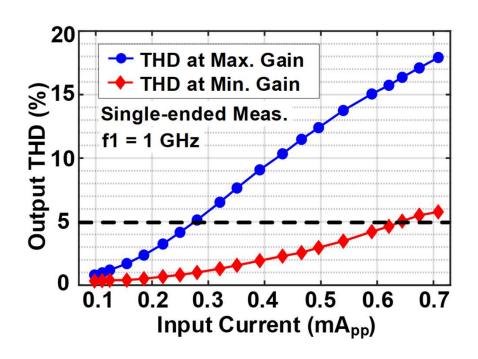

Freq (GHz)

- ZT: max. gain of 65 dBΩ with a 28 GHz BW
- 9-dB gain control range with an average step of 0.3 dB, overall BW variation < 3 GHz
- CTLE: dc gain control range of 6.8 dB

Noise Measurement

Single-ended output noise distribution

- 80-GHz sampling oscilloscope
- Noise from oscilloscope de-embedded

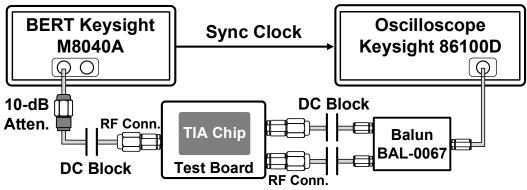

Input-referred current noise

$$i_{n,in}(rms) = \frac{2 \times \sqrt{(2.65mV)^2 - (1.16mV)^2}}{10^{(\frac{65}{20})}} = 2.68 \,\mu A_{rms}$$

Average input-referred current noise density

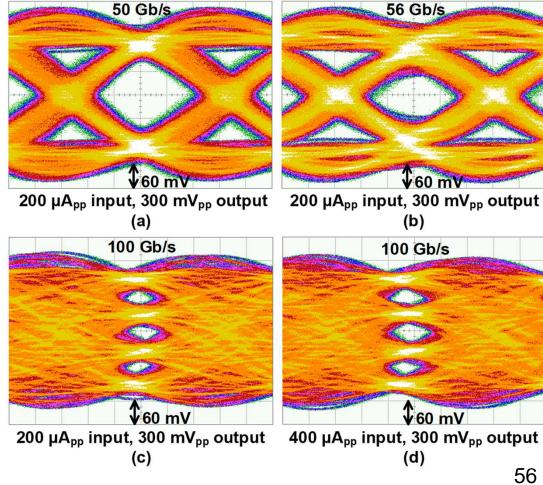
$$2.68 \, \mu A_{rms} / \sqrt{28 \, GHz} = 16 \, pA / \sqrt{Hz}$$

THD Measurement

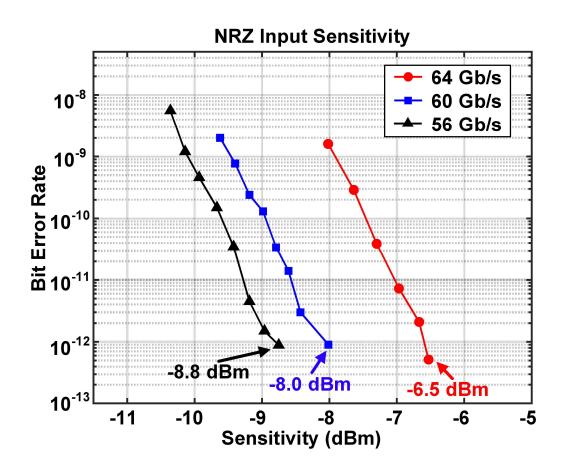

Single-ended total harmonic distortion (THD)

- 67-GHz spectrum analyzer
- 1-GHz fundamental frequency
- 10 harmonics counted

Within a THD of 5%


- At max. gain: 280 μA_{pp} input, ~500 mV_{pp} output
- At min. gain: 640 μA_{pp} input, ~400 mV_{pp} output

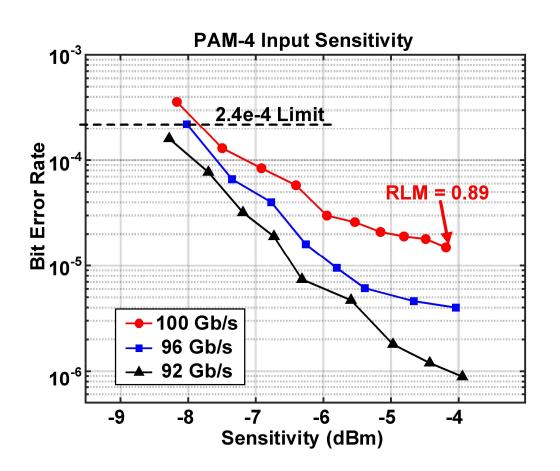
Time Domain Measurement



Time domain measurement setup

- 64-Gbaud bit error rate tester (BERT)
- 10-dB attenuator at data input
- TIA differential output combined by a balun
- More than 10k UI of PRBS-9 pattern

BER Measurement: NRZ


■ BER at different amplitudes of electrical input signals is measured

- Assume a PD responsivity of 0.75 A/W
- Estimated BER versus input OMA sensitivity

■ Under 1e-12 BER

- -6.5-dBm sensitivity at 64 Gb/s
- -8.8-dBm sensitivity at 56 Gb/s

BER Measurement: PAM-4

■ BER at different amplitudes of electrical input signals is measured

- Assume a PD responsivity of 0.75 A/W
- Estimated BER versus input OMA sensitivity

■ Under 2.4e-4 pre-FEC limit

- -7.8-dBm sensitivity at 100 Gb/s
- With -4-dBm input at 100 Gb/s, 1.5e-5 BER achieved with a RLM of 0.89

Comparison Table

Reference	ESSCIRC'18 [6]	JSSC'22 [7]	JSSC'22 [3]	JSSC'23 [8]	VLSI'23 [9]	SSCL'23 [10]	SSCL'24 [11]	This Work
Technology	28nm CMOS	22nm FinFET	28nm CMOS	16nm FinFET	12nm FinFET	22nm FD- SOI	28nm CMOS	28nm CMOS
Data Rate (Gb/s)	112*	128*	100	112	90	106.25	85*	100*
Gain (dBΩ)	65	59.3	68.6	63	65	74	65	65
BW (GHz)	60	45.5	20.8	32	25	28	24	28
THD@ Input Current, Output Amplitude)	<5%@ 1mA _{pp} , N/A	<5%@ 330µA _{pp} , 304mV _{pp}	NA	<8%@ 670µA _{pp} , 336mV _{pp}	<9%@ 600µA _{pp} , N/A	<4%@2.46 mA _{pp} , 550mV _{pp}	<1.77%@ 330µA _{pp} , 660mV _{pp}	<5%@ 640µA _{pp} , 400mV _{pp}
Noise (pA/\sqrt{Hz})	19.3	12.6	17	16.9	13.4	11	10.4	16
Input/Output ESD	No	No	No	Yes (80f)	Yes	Yes	No	Yes (90f)
Power (mW)	107	11.2	117	77	29.2	155	56	32
Efficiency (pJ/bit)	0.96	0.09	1.17	0.69	0.32	1.46	0.66	0.32
FoM**	997	3748	478	739	1522	905	762	1556

^{*}Electrical Measurement

**FoM =
$$\frac{Gain(\Omega) \times BW_{3dB}(GHz)}{P_{dC}(mW)}$$

Outline

- Background
- PAM-4 Optical Receiver Data Path
- > PAM-4 Optical Receiver Front End
- **Conclusion**

Conclusion

■ PAM-4 ORX Data Path

- A 48-Gb/s PAM-4 ORX is proposed with a linear TIA and a PAM-4 sampler integrated
- The TIA avoids CTLE and passive inductors, and the sampler incorporates a 2-tap FFE and a 2-tap DFE to mitigate ISI from TIA
- Under 2.4e-4 BER, -5.1-dBm sensitivity is achieved with 1.28-pJ/bit (0.27-pJ/bit for TIA alone) efficiency

■ PAM-4 ORX Front End

- A 100-Gb/s PAM-4 linear TIA is proposed with high inductance density
- A single-ended inverter-based CTLE is implemented, and a current reuse VGA based on a TAS-TIS topology provides a large gain-BW product and high linearity
- 28-GHz BW with a 65-dBΩ gain is achieved, consuming only 32 mW

Publication

- [1] **Chongyun Zhang**, Fuzhan Chen, Li Wang, Lin Wang, and C. Patrick Yue, "Recent advances of high-speed short-reach optical interconnects for data centers," *IEEE Open J. Solid-State Circuits Soc.*, vol. 5, pp. 86-100, 2025.
- [2] **Chongyun Zhang**, Li Wang, Zilu Liu, Fuzhan Chen, Quan Pan, Xianbo Li, and C. Patrick Yue, "A 48-Gb/s half-rate PAM4 optical receiver with 0.27-pJ/bit TIA efficiency, 1.28-pJ/bit RX efficiency, and 0.06-mm² area in 28-nm CMOS," in *Proc. IEEE Symp. VLSI Technol. Circuits* (VLSI Technol. Circuits), Jun. 2024, pp. 1–2.
- [3] **Chongyun Zhang**, Fuzhan Chen, and C. P. Yue, "A 56-Gb/s PAM-4 transmitter using silicon photonic microring modulator in 40nm CMOS," in *Proc. IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS)*, Aug. 2022, pp. 1-4.
- [4] **Chongyun Zhang**, Xinyi Liu, and C. Patrick Yue, "A compact VCSEL model for high-speed optical interconnect design," in *Proc. Laser Congr. (ASSLLAC)*, Jan. 2021, JTu1A.30.
- [5] Abdekhoda Johar, **Chongyun Zhang**, Li Wang, Reza Sarvari, Reza Navid, and C. Patrick Yue, "A 56-Gb/s PAM-4 injection-locked CDR," in Proc. IEEE Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2025, accepted.
- [4] Fuzhan Chen, **Chongyun Zhang**, Li Wang, Quan Pan, and C. Patrick Yue, "A 56-Gb/s PAM-4 VCSEL transmitter with piecewise compensation scheme in 40-nm CMOS," *IEEE J. Solid-State Circuits*, early access.
- [5] Fuzhan Chen, **Chongyun Zhang**, Li Wang, Quan Pan, and C. Patrick Yue, "A 2.05-pJ/b 56-Gb/s PAM-4 VCSEL transmitter with piecewise nonlinearity compensation and asymmetric equalization in 40-nm CMOS," in *Proc. IEEE Eur. Solid State Circuits Conf. (ESSCIRC)*, Sep. 2023, pp. 373-376.
- [7] **Chongyun Zhang**, Li Wang, Fuzhan Chen, Quan Pan, Xianbo Li, and C. Patrick Yue, "A 48-Gb/s inductorless PAM4 optical receiver with 1.28-pJ/bit efficiency in 28-nm CMOS," *IEEE J. Solid-State Circuits*, major revision.

Acknowledgement

■ Supervisor: Prof. C. Patrick Yue

■ Committee Members

Chairperson: Prof. Wenjing Ye

External: Prof. Chao Wang

ECE: Prof. Howard Cam Luong

Prof. Man Hoi Wong

• CSE: Prof. Song Guo

■ All Optical Wireless Lab Members

Dr. Li Wang

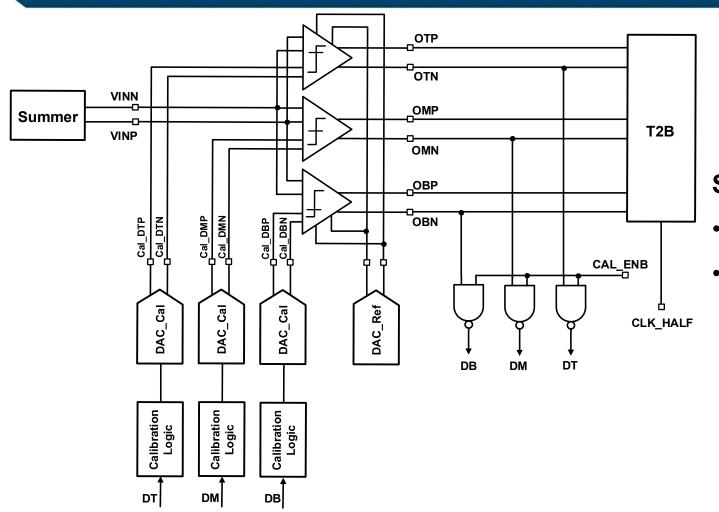
Dr. Fuzhan Chen

Reference

- [1] M. G. Ahmed, D. Kim, R. K. Nandwana, A. Elkholy, K. R. Lakshmikumar and P. K. Hanumolu, "A 16-Gb/s -11.6-dBm OMA sensitivity 0.7-pJ/bit optical receiver in 65-nm CMOS enabled by duobinary sampling," *IEEE J. Solid-State Circuits*, vol. 56, no. 9, pp. 2795–2803, Sep. 2021.
- [2] W. Ho, Y. Hsieh, B. Murmann and W. Chen, "A 32 Gb/s PAM-4 optical transceiver with active back termination in 40 nm CMOS technology," *IEEE Open J. Circuits Syst.*, vol. 2, pp. 56–64, 2021.
- [3] H. Li, C. Hsu, J. Sharma, J. Jaussi and G. Balamurugan, "A 100-Gb/s PAM-4 optical receiver with 2-tap FFE and 2-tap direct-feedback DFE in 28-nm CMOS," *IEEE J. Solid-State Circuits*, vol. 57, no. 1, pp. 44–53, Jan. 2022.
- [4] H. Kang, I. Kim, R. Liu, et al., "A 42.7Gb/s Optical Receiver with Digital CDR in 28nm CMOS," in *Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC)*, Jun. 2023, pp. 9–12.
- [5] S. Krishnamurthy et al., "A 4×50Gb/s NRZ 1.5pJ/b co-packaged and fiber-terminated 4-channel optical RX," in *Proc. IEEE Symp. VLSI Technol. Circuits* (VLSI Technol. Circuits), Jun. 2024, pp. 1-2.
- [6] H. Li, G. Balamurugan, J. Jaussi and B. Casper, "A 112 Gb/s PAM4 linear TIA with 0.96 pJ/bit energy efficiency in 28 nm CMOS," in *Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC)*, Sep. 2018, pp. 238–241.

Reference

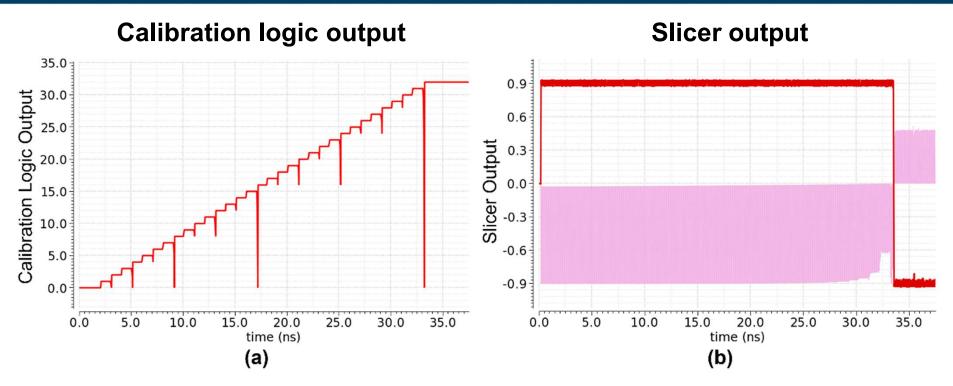
- [7] S. Daneshgar, H. Li, T. Kim and G. Balamurugan, "A 128 Gb/s, 11.2 mW single-ended PAM4 linear TIA with 2.7 μArms input noise in 22 nm FinFET CMOS," *IEEE J. Solid-State Circuits*, vol. 57, no. 5, pp. 1397-1408, May 2022.
- [8] D. Patel, A. Sharif-Bakhtiar and T. C. Carusone, "A 112-Gb/s 8.2-dBm sensitivity 4-PAM linear TIA in 16-nm CMOS with co-packaged photodiodes," *IEEE J. Solid-State Circuits*, vol. 58, no. 3, pp. 1–14, Mar. 2023.
- [9] M. Kashani, H. Shakiba and A. Sheikholeslami, "A 0.32pJ/b 90Gbps PAM4 optical receiver front-end with automatic gain control in 12nm CMOS FinFET," in *Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits),* June 2023, pp. 1-2.
- [4] M. Parvizi et al., "A 112-Gb/s, -10 dBm sensitivity, +5 dBm overload, and SiPh-based receiver frontend in 22-nm FDSOI," *IEEE Solid-State Circuits Lett.*, vol. 7, pp. 263-266, 2024.
- [5] S. Ma et al., "A 85-Gb/s PAM-4 TIA With 2.2-mApp Maximum Linear Input Current in 28-nm CMOS," *IEEE Solid-State Circuits Lett.*, vol. 7, pp. 50-53, 2024.



Thank you

Optical Wireless Lab

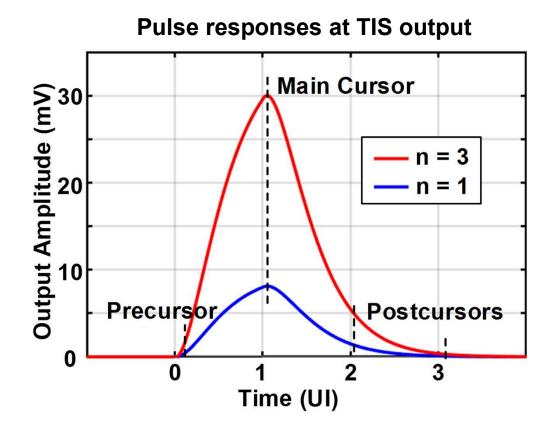
Department of Electronic and Computer Engineering
the Hong Kong University of Science and Technology (HKUST)


Back-up: Calibration Logic

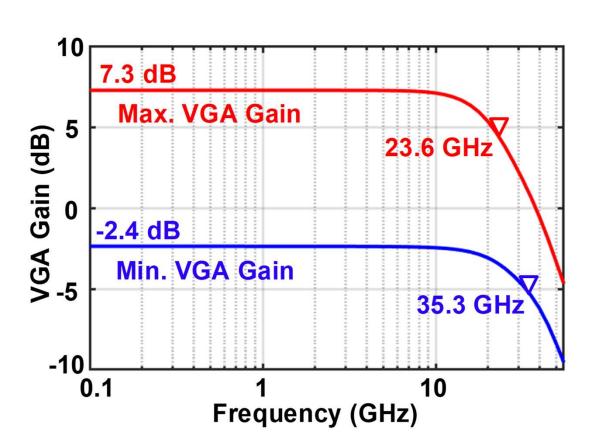
Slicers with calibration circuits

- Calibration logic
- 6-bit calibration DACs, DAC_Cal

Back-up: Calibration Logic

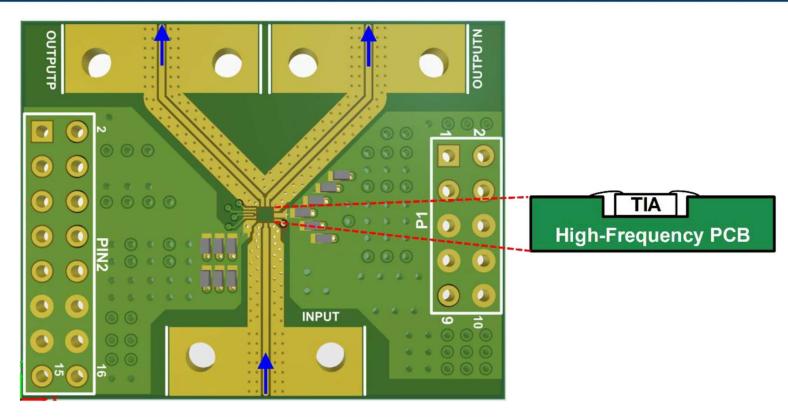

- If the comparator does not generate '0' within 8 clock cycles, calibration logic output increases by 1 and DAC_cal increases by 1 MSB
- The process continues until a transition from '1' to '0' happens at slicer output and the calibration ends

Back-up: V_{ISI} Calculation


• Worst eye opening V_{ISI} for PAM-4 is calculated from

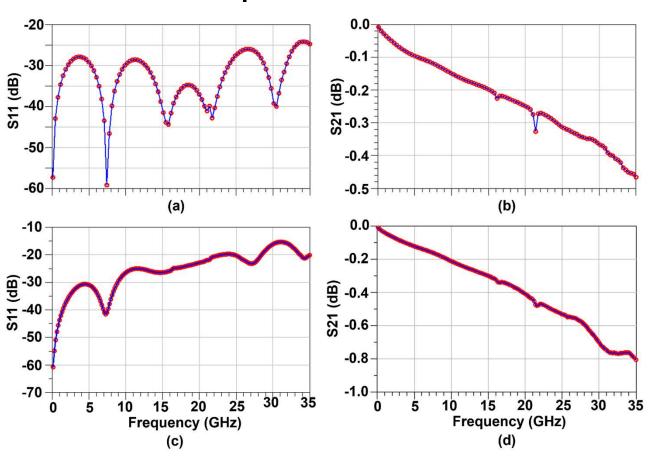
$$V_{ISI} = |V_0| - 3\sum_{i \neq 0} |V_i|$$

- V_0 is the main cursor
- V_i is the i_{th} pre/post cursors



Back-up: Response of Proposed VGA in 100-Gb/s TIA

- 7.3 dB with 23.6 GHz BW
- -2.4 dB with 35.3 dB
- 9.7 dB dynamic range, 11.7 GHz BW variation


Back-up: High-Frequency PCB Design

- 10-mil RO4350B material for laminates
- PCB is trenched to accommodate the TIA die, reducing the length of bond wires

Back-up: High-Frequency PCB Design

Simulated S parameters of PCB traces

Input trace:

- S11 < -20 dB up to 35 GHz
- S21 > -0.4 dB at 25 GHz

Output trace:

- S11 < -10 dB up to 35 GHz
- S21 > -0.6 dB at 25 GHz