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Abstract

The rapid advancements in Artificial Intelligence (AI) have driven a significant surge in de-
mand for high-speedwireline communication systems. This increasing need for higher data rates
calls for power- and area-efficient solutions in data transmission. Clocking circuits, which pro-
vide timing references to support various functionalities and directly determine the data rate, are
a critical component of wireline systems. However, they also account for a substantial portion of
the power overhead, consuming approximately one-third of the total system power. To improve
the power efficiency of data links, sub-data-rate clocking architectures have gained popularity
among designers due to their ability to reduce power consumption and alleviate bandwidth re-
quirements. These architectures necessitate multi-phase clock generation to produce accurate,
low-jitter quadrature clocks, meeting stringent requirements for both random jitter (RJ) and de-
terministic jitter (DJ) in modern wireline systems to ensure high-quality data transmission.

In this thesis, we present the design and implementation of a novel multi-phase clock gen-
erator (QCG) operating within the frequency range of 5 to 10 GHz. The proposed architecture
integrates a duty cycle correction (DCC) circuit, a digitally controlled delay line (DCDL), and
a two-stage open-loop quadrature error corrector (QEC) to effectively minimize phase errors.
Additionally, a finite state machine (FSM) is implemented to perform initial calibration, ensur-
ing optimal QCG performance without introducing extra jitter. The prototype chip occupies a
compact area of 0.012 mm². Measurement results demonstrate a phase error of ≤ 0.8° and an
integrated RMS jitter of 61.1 fs, with a power consumption of 10.2 mW at 10 GHz operation.

In conclusion, the proposed design offers an open-loop alternative for QCG, delivering com-
petitive performance in terms of noise contribution, power efficiency, and phase accuracy. This
design meets the stringent requirements of modern wireline transceivers, making it a promising
solution for high-speed communication systems.
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CHAPTER 1

INTRODUCTION

The performance of wireline communication systems has become increasingly vital due to

the rapid advancement of artificial intelligence (AI), which has generated an exponential amount

of data and significantly heightened processing and transmission demands [1].

1.1 High-speed wireline transceiver systems

Channel

Transmitter Receiver

Clock Clock

Data

... ADCADC Data

M
U

X

Figure 1.1: Wireline transceiver system

Wireline systems are essential components in modern communication networks, enabling the

transmission and reception of data over wired connections. These systems typically consist of

three main parts: the transmitter, the receiver, and the communication channel, as shown in

Figure (1.1). The transmitter converts digital data into electrical signals in certain modulation

schemes and send themodulated information signals into the channel, while the receiver captures

these signals from the channel, performing amplification, clock/data recovery and demodulation

to retrieve accurate digital data while mitigating noise and distortion. The communication chan-

nel, whether electrical or optical, transmits the modulated signals from the transmitters to the

receivers, and influences data transmission quality through its bandwidth, attenuation, and noise

characteristics.

Wireline systems are widely used in a lot of applications, such as die-to-die communications,
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on-board interconnect (PCIE, NVLink, etc), and large-scale data centers, to support tremendous

data throughput demand in this era of AI.

1.1.1 Chip-to-chip communication

Figure 1.2: High-bandwidth memory with advanced package technology [2].

Driven by surging AI computing demands, data traffic between processors (CPUs/GPUs) and

memory has escalated dramatically. To overcome the resulting latency and bandwidth bottle-

necks, High Bandwidth Memory (HBM) utilizes memory stacking and Through-Silicon Vias

(TSVs) to minimize physical distance between memory and logic units. This vertical integra-

tion is enabled by 2.5D/3D packaging technologies, where a silicon interposer, featuring ultra-

dense wiring and TSVs, provides a high-speed communication bridge between stacked dies.

While this addresses proximity challenges, scalingmonolithic SoCs faces critical yield concerns:

larger dies suffer exponentially higher defect rates. Chiplets directly mitigate this by disaggre-

gating systems into smaller, specialized dies (<300mm²), where smaller silicon areas inherently

achieve higher manufacturing yields. Defective chiplets can be discarded or binned indepen-

dently, significantly improving cost efficiency versus scrapping a single large die. To enable

robust communication between these heterogeneous chiplets, standards like UCIe (Universal

Chiplet Interconnect Express) define high-bandwidth, low-latency die-to-die interfaces. UCIe

ensures interoperability across vendors and process nodes, making modular, yield-optimized

designs commercially viable for next-gen AI hardware.
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1.1.2 On-board interconnects

0

32

64

96

('03) ('06) ('10) ('17) ('19)
Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Gen7

PCIe Data Rate vs. Generation

(Gbps)
128

('22) ('24)

CXL3.0

Figure 1.3: Increasing data rates of PCI. Express standard [3].

Inmodern computing systems spanning personal computers to artificial intelligence (AI) servers,

on-board interconnects enable critical module-to-module communication between processors,

memory, accelerators, and peripherals. These interconnects fundamentally rely on printed cir-

cuit board (PCB) traces – copper pathways etched onto the system board – which serve as the

physical channel for transmitting electrical signals. To overcome the inherent bandwidth and sig-

nal integrity limitations of PCB traces, specialized high-speed protocols deliver the massive data

throughput required for AI applications: Graphics Double Data Rate (GDDR) interfaces pro-

vide ultra-high-bandwidth connections between GPU and dedicated video memory; Peripheral

Component Interconnect Express (PCIe) establishes versatile, high-speed links between CPUs

and devices like solid-state drives (SSDs) or accelerators; and NVIDIA’s NVLink technology

facilitates direct, low-latency GPU-to-GPu communication in multi-GPU AI server configura-

tions. Collectively, these protocols transform passive PCB infrastructure into intelligent data

highways, enabling the rapid transfer capabilities essential for complex AI training and infer-
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ence workloads.

1.1.3 Modern data centers enabling AI applications
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Figure 1.4: Evolving trend of data centers for AI applications [1].

Modern data centers supporting AI workloads rely heavily on advanced wireline systems tomeet

the unprecedented demand for high-speed, low-latency, and reliable connectivity. AI-driven

applications, such as machine learning training, real-time inference, and large-scale data pro-

cessing, require massive data transfer between servers, storage, and accelerators like GPUs and

TPUs. These applications require massive data exchange at >200 Gbps per-lane rates across ex-

tended communication distances—from intra-rack meters to inter-building kilometers. Optical

communication links enable this high-speed transmission with inherently lower signal loss ver-

sus electrical alternatives, while advanced modulation like 4-level amplitude modulation (PAM-

4 efficiently) doubles spectral capacity within fixed bandwidth constraints. AI’s exponential

growth has driven demand expansion for these systems, pushing the boundaries of network

capacity and efficiency to support the ever-increasing scale of AI models and datasets. As a

result, modern data centers are rapidly evolving their wireline infrastructure to ensure seam-

less, high-performance connectivity, which is essential for sustaining the next generation of AI

innovations.
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1.2 Multi-phase clock sampling

Sub-rate (1/4) Architecture
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Straightforward implementation

High-power clock generation and distribution Relieved power and bandwidth issue

Requires multi-phase sampling clocksBandwidth issue for clock buffers

Figure 1.5: Comparison between half-rate and quarter-rate clocking architectures.

In the applications discussed above, circuit designers continually strive to extract maximum

performance from available technologies to address the ever-increasing demand for higher data

throughput. As a result, the development of power- and area-efficient data links has emerged as

a critical priority in modern communication systems.

Traditional half-rate sampling methods benefit from straightforward implementation, pro-

viding sufficient sampling edges with one pair of differential clocks, and thus have been widely

employed in systems with a low-to-medium data rate. However, as data rate continuously grows

and exceeds 100 Gbps, this approach face limitations in terms of high power consumption and

restricted electrical bandwidth.

Multi-phase sampling architectures in wireline systems enhance efficiency by distributing

the sampling process across multiple phases, reducing power consumption and easing band-

width demands. By interleaving sampling operations across different phases, these architectures

achieve lower per-phase sampling rates while maintaining overall system performance. This ap-

proach significantly reduces the power burden by minimizing the number of full-rate nodes in

the system and lowering the power required for high-frequency clock generation and distribu-

tion. As a result, multi-phase sampling not only optimizes power efficiency but also offers a

scalable solution for high-speed wireline communication systems, making it a key innovation

for modern high-performance networks.

Multi-phase sampling architectures leverage sub-data-rate multi-phase clocks to deliver pre-
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cise timing control and synchronization. Increasing the number of phases allows for a propor-

tional reduction in clock frequency. However, this method is constrained by practical limi-

tations, as an excessive number of phases introduces challenges in clock distribution, includ-

ing phase inaccuracies, duty cycle distortion, and increased routing complexity. Consequently,

quarter-rate architectures are commonly adopted as an optimal balance between power effi-

ciency and difficulties of clock distribution.

In general, half-rate architectures are better suited for low-to-medium data-rate systems, such

as HBM interfaces or lower-speed PCIe configurations. Conversely, sub-rate multi-phase sam-

pling architectures (e.g., quarter-rate) are optimized for high-data-rate systems like 100G/200G

optical interconnects.

1.3 Thesis organization

This thesis is structured to provide a comprehensive overview of the design and implementation

of a multi-phase clock generator for high-speed wireline systems. The organization of the thesis

is as follows:

Chapter 2 discusses the fundamental characteristics and requirements of clock signals in

wireline systems. It explores the impact of random jitter and deterministic jitter on system

performance and reviews various clocking architectures, including global and local clock gen-

eration techniques. The chapter concludes with an assessment of existing quadrature clock gen-

erator designs, emphasizing their strengths and weaknesses.

Chapter 3 presents the design and implementation details of the proposed quadrature clock

generator (QCG). It describes the architecture, including the digitally controlled delay line (DCDL)

and the phase interpolator(PI)-based quadrature error corrector (QEC). The chapter further dis-

cusses the calibration techniques employed to enhance performance, along with simulation and

measurement results that validate the effectiveness of the proposed solution.

Chapter 4 summarizes the key contributions of the thesis, reflecting on the successful design

and performance of the QCG in meeting the stringent requirements of high-speed wireline ap-

plications. It also outlines potential avenues for future research, including the integration of the

QCG into complete clocking subsystems and its application in multi-lane transceiver systems.
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CHAPTER 2

CLOCKING ARCHITECTURES FORWIRELINE
TRANSCEIVERS

As previously discussed, clock signals play a crucial role in providing synchronization and

enabling data transmission in wireline systems. In this chapter, we focus on the characteristics

and requirements of clock signals in such systems, exploring their impact on overall perfor-

mance. Additionally, typical clocking implementations, including global and local clock gen-

eration techniques, will be introduced to illustrate how precise timing control is achieved in

high-speed wireline applications.

2.1 Clock signals in wireline systems

Clock signals are fundamental to the operation of communication systems, serving as the timing

reference that synchronizes data transmission and signal processing. Clock signals are typically

periodic and can take the form of either sinusoidal or square-wave waveforms.

In wireline and wireless systems, clock signals play a critical role in synchronization and

data transmission, but their implementation differs significantly due to the nature of the com-

munication medium. In wireline systems, square-wave clocks are predominantly used because

they provide sharp, well-defined edges that are ideal for high-speed digital communication trig-

gering sequential circuits such as filp-flops and multiplexers shown in Figure (2.1a), ensuring

precise timing and minimal jitter. On the other hand, wireless systems often rely on sinusoidal

clocks, which are better suited for modulation and transmission over the air due to their contin-

uous and smooth waveform, reducing harmonic interference and improving spectral efficiency.

While square-wave clocks are easier to generate and process in digital circuits, their high har-

monic content makes them less suitable for wireless applications, where sinusoidal clocks are

preferred for their ability to maintain signal integrity in RF environments. For example, Fig-

ure (2.1b) presents an up-conversion RF system with a mixer driven by local oscillator (LO)

clock, which is normally sinusoidal to reduce harmonic components in the output signal.
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Figure 2.1: Clock signals in: (a) wireline system; (b) wireless/RF systems

In terms of clock generation requirements, wireline and wireless systems exhibit distinct

differences. In wireline systems, which typically employ direct baseband modulation and uti-

lize the entire bandwidth of the physical channel, the clock generation circuit must support a

wide range of operating frequencies to accommodate varying data rates. In contrast, wireless

systems, which often rely on modulation schemes like orthogonal frequency-division multiplex-

ing (OFDM), require clock generation circuits such as frequency synthesizers to provide clock

signals with fine frequency resolution within a specific bandwidth but doesn’t necessarily cover

as wide a frequency range as wireline systems.

Furthermore, the requirements for phase noise and jitter performance vary between wire-

line and wireless systems. Typically, a wireless transceiver shares the spectrum with other

transceivers, occupying only a portion of the available bandwidth. To mitigate adjacent channel

leakage, phase noise within the relevant bandwidth, usually up to a 100 MHz offset frequency,
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is of primary concern. In contrast, a wireline transceiver generally utilizes the entire bandwidth

of a specific channel, such as a cable or optical fiber, with a focus on real-time data transitions.

In this context, real-time clock uncertainty, including deterministic jitter (DJ) and random jitter

(RJ) in the sampling clocks, is of utmost importance. The phase noise of the sampling clock

is often employed to estimate jitter in the time domain, necessitating integration over a broad

frequency range, conservatively extending to half of the carrier frequency [4].

In the following section, we will focus on square-wave clocks and discuss the key perfor-

mance specifications including random jitter and deterministic jitter. An example of a wireline

transmitter will be shown to demonstrate the effect of them on an actual wireline system.

2.1.1 Random jitter

Random jitter in clock signals refers to the unpredictable variations in the timing of clock edges,

which can degrade the performance of communication systems by introducing timing uncer-

tainty [5]. Random jitter is primarily caused by inherent noise processes, such as thermal noise,

shot noise, and flicker noise within various electronic devices like transistors and resistors.

These noise sources introduce small, random fluctuations in the clock period, making it chal-

lenging to predict the exact timing of clock transitions. Random jitter is typically quantified by

its root mean square (RMS) value, representing the standard deviation of the timing variations.

To measure random jitter, two primary methods can be employed: the histogram method

and the phase noise method, as shown in Figure (2.2). The first approach involves capturing the

clock signal using a high-bandwidth oscilloscope and analyzing the timing variations of the clock

edges. By constructing a histogram of the edge deviations, the random jitter can be extracted as

the standard deviation of the Gaussian distribution fitted to the histogram. This method provides

a direct time-domainmeasurement of jitter, offering intuitive insights into timing variations. The

second method leverages phase noise measurements, which characterize the frequency-domain

fluctuations of the clock signal. Using a general spectrum analyzer or a dedicated phase noise

analyzer, the phase noise plot is measured and then integrated over a specified frequency range.

Through established mathematical relationships, the phase noise is converted into random jitter.

Both methods provide complementary perspectives, enabling comprehensive characterization

of random jitter in clock signals.
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Figure 2.2: Measurement of random jitter. (a) Histogram method. (b) Phase noise method.

2.1.2 Deterministic jitter

Deterministic jitter refers to the predictable, repeatable timing variations in clock edges, which

arise from specific, identifiable sources within a system [5, 6]. Unlike random jitter, which is

caused by inherent noise processes, deterministic jitter is typically induced by systematic factors

such as power supply noise, crosstalk, inter-symbol interference (ISI), or imperfections in the

clock generation circuitry. This type of jitter is bounded and can often be characterized by its

periodic or data-dependent behavior, making it possible to analyze and mitigate through care-

ful design and signal conditioning. Deterministic jitter is commonly quantified by measuring its

peak-to-peak amplitude, which represents the maximum deviation in timing over a given period.

To measure deterministic jitter, tools such as oscilloscopes, jitter analyzers, or eye diagram anal-

ysis can be used, often in conjunction with techniques like spectral analysis or pattern triggering

to isolate and identify its specific sources. Figure (2.3) shows the measurement method with

oscilloscopes, where DJ is measured by the time difference of the two distribution peaks. By

understanding and addressing deterministic jitter, designers can improve the timing accuracy of

clock signals, which is critical for maintaining signal integrity and ensuring reliable operation

in high-speed communication systems.
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Figure 2.3: Measurement of deterministic jitter

In wireline transceiver systems, two specific factors from clock signals that could result in

deterministic are duty cycle distortion and quadrature phase error. Duty cycle distortion occurs

when the high and low periods of a clock signal are unequal, often due to asymmetries in the

clock generation or amplification stages. This imbalance leads to timing mismatches, which can

degrade the performance of digital circuits that rely on precise clock edges. Quadrature phase

error, on the other hand, arises in systems where multiple clock signals are required to maintain

specific phase relationships, such as in-phase (I) and quadrature-phase (Q) signals in quadrature

modulation schemes. Imperfections in multi-phase clock generators, mismatched trace lengths,

or propagation delays can cause deviations from the ideal 90-degree phase separation, leading to

quadrature phase error. Both duty cycle distortion and quadrature phase distortion can degrade

data transmission quality in wireline systems, particularly those employing multi-phase sam-

pling architectures. Addressing these issues is essential for ensuring accurate timing and optimal

performance in high-speed communication systems, often necessitating calibration techniques

and error correction circuits.
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2.1.3 Effect of RJ and DJ on wireline systems

D1

D2

D3

D4

D1 D2 D3 D44:1
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Simulated Output Eye

Sampling Quadrature Clocks

Duty Cycle = 50%

Quadrature Phase = 90º   
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Quarter Rate Data

Figure 2.4: A 32-Gbps quarter-rate transmitter with a 4-to-1 multiplexer using ideal sampling
clocks

Figure (2.4) illustrates the effects of RJ and DJ on the signal quality in a wireline system. The

system features a 32-Gbps quarter-rate transmitter that serializes 4-way 8-Gbps parallel data into

32-Gbps serial data using quadrature clocks.

In Figure (2.4), the transmitter uses an ideal sampling clock for the 4:1 multiplexer (MUX),

free from random jitter, duty cycle distortion, and quadrature phase error. Consequently, the

output eye diagram displays high signal integrity, with sharp transitions and a wide decision

window for the receiver. In contrast, Figure (2.5) depicts the impact of sampling the input data

with clocks exhibiting 200 fs RMS random jitter. The jittery clocks cause the transition distribu-

tion to propagate to the output data, resulting in blurred transitions in the eye diagram. Regarding

deterministic jitter, Figure (2.6) shows that multiplexing data with clocks affected by duty cy-

cle distortion causes the transitions in the eye diagram to split. This splitting becomes more

pronounced when both duty cycle distortion and quadrature phase error are present in the sam-

pling clocks, as shown in Figure (2.7). Finally, Figure (2.8) demonstrates the combined effect

of DJ and RJ, where the output eye diagram undergoes significant degradation. The transitions

become widely dispersed, and the optimal decision window narrows substantially, making it

challenging for receiver to accurately recover the data.
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Figure 2.5: A 32Gbps NRZ quarter-rate wireline transmitter using sampling clocks with 200-fs
RMS jitter.
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Figure 2.6: A 32Gbps NRZ quarter-rate wireline transmitter using sampling clocks with 45%
duty cycle.
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Figure 2.7: A 32Gbps NRZ quarter-rate wireline transmitter using sampling clocks with 45%
duty cycle and 85° quadrature phase.
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Figure 2.8: A 32Gbps NRZ quarter-rate wireline transmitter using sampling clocks with 200-fs
RMS jitter, 45% duty cycle and 85° quadrature phase.
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2.2 Clocking implementation for multi-lane applications

As shown in Figure (2.9), the clocking implementation for a multi-lane wireline transceiver

typically consists of two main components: global clock generation and local clock generation

[7, 8]. The global clock generation is responsible for producing a stable and low-jitter reference

clock that is distributed across the system, while the local clock generation focuses on generating

multiple clock phases with precise phase relationships to enable high-speed data sampling and

transmission.
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Figure 2.9: Clocking implementation in a multi-lane transceiver systems

2.2.1 Global clock generation

Global clock generation is the first step in the clocking implementation process, providing a

high-quality reference clock that serves as the foundation for the entire system. This reference

clock must exhibit low phase noise and jitter to ensure accurate timing across the system, espe-

cially in high-speed wireline applications where timing margins are extremely tight. The global

clock is typically generated using very-low-noise LC phase-locked loops (LC-PLLs) with an

RMS jitter of <100fs.
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2.2.2 Local clock generation

Local clock generation focuses on creating multiple clock phases with precise phase relation-

ships. This process typically involves phase control circuits that manipulate the global reference

clock to generate the required phases. Multi-phase clock generation include two topics: quadra-

ture clock generation and phase control.

Quadrature clock generation produces clock signals with with precise phase separations,

such as 90 degrees for 4-phase clocks (0°, 90°, 180°, 270°) or 45 degrees for 8-phase clocks (0°,

45°, 90°, 135°, 180°, 225°, 270°, 315°) [9–24]. These clocks are typically generated using tech-

niques like ring oscillators, frequency division, or polyphase filters, with the goal of maintaining

accurate phase alignment and minimizing phase error.

Quadrature clocks serve two primary purposes in high-speed systems. First, they enable sub-

data-rate multi-phase sampling architectures as discussed in Chapter 1. Second, they divide the

phase plane into quadrants, typically 4 and 8 quadrants, providing reference phases that can be

used as inputs for phase interpolators which can generate clock signals with precise timing/phase

control.

To achieve functions like de-skewing and clock/data recovery, fine phase control is neces-

sary in wireline applications. Voltage-controlled delay line (VCDL) is a common approach to

control the clock phase. However, due to the limited tuning range, it is difficult for VCDL to

cover a large phase control range over different operation frequencies. Phase interpolators serve

as feasible method for phase controlling over different frequencies [17, 20–22, 25, 26]. A phase

interpolator can generate an output clock with a phase that is an intermediate value between two

input signals with a known phase difference (e.g. 90° and 45°). By combining these signals in

specific proportions, different intermediate phases between the two input phases can be gener-

ated by certain resolution. For example, if the inputs are 0° and 90°, the output could be adjusted

to 45° by equally weighting the two inputs. Theoretically, by choosing the combination of input

phases (e.g. 2 phases from 0°, 90°, 180° and 270°) and modulating the combining weights, a

phase interpolator can produce any phase from 0° to 360°.
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2.3 Review on QCG
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Figure 2.10: Quadrature clock generator. (a) Frequency dividers. (b) Poly-phase filters. (c)
Ring-oscillator-based PLL. (d) Open-loop injection-locked ring oscillators. (e) Wide-band
injection-locked ring oscillators. (f) Delay-locked loop. (g) Delay line with digital control logic.

Various approaches for QCG implementations have been proposed. Frequency dividers are

widely used for QCG due to their ability to produce good phase accuracy from a 50%-duty-cycle
clock [8, 27–40]. However, frequency dividers suffer from high power consumption in high-

frequency clock generation and distribution. Poly-phase filters can generate quadrature clocks
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but exhibit a narrow operation range, amplitude variation and poor phase accuracy [11, 24, 41–

43]. Ring-oscillator-based phase-locked loops (ROPLL) can generate 4-phase or 8- phase clocks

with high phase accuracy but struggle with phase noise performance since typical PLL structures

usually cannot sufficiently suppress the phase noise from the ring voltage-controlled oscillator

(VCO) to meet jitter requirements of wireline systems [44, 45].

Injection-locked methods can improve the jitter performance of ring oscillators for QCG

by injecting a low-noise input clock. Open-loop injection-locked structure is widely used for

its simple circuitry [12, 46–49]. However, the inherent frequency of a ring oscillator is highly

sensitive to process, voltage, and temperature (PVT) variations, leading to a narrow locking

range, limited correction performance, and potential degradation in the duty cycles of the output

clocks. To address these challenges, designers have attempted cascading multiple stages of

injection-locked ring oscillators. While this approach improves phase matching, it comes at the

cost of increased power consumption and still suffers from a narrow locking range and duty

cycle-related issues.

Wide-band injection-locked (IL) architectures can mitigate those issues by adaptively regu-

lating the self-oscillation frequency of the ring oscillators [14, 15, 17, 20, 22, 50–52]. In [17],

an injection-locked 8-phase quadrature-locked loop was implemented with a 4-stage ring os-

cillator whose supply voltage is regulated by a phase error detection circuit. Nevertheless, the

commonly used two-phase injection approach introduces imbalances between injected and non-

injected stages, leading to phase mismatch and limited jitter performance [53]. Increasing the

number of injectors can solve this problem but necessitates an initial multi-phase clock genera-

tor, which increases the power and hardware overhead. [22] presented an injection-locked ring

oscillator with 8-phase injection where the initial 8-phase clocks are generated from a quadrature

delay-locked loop, showing good noise and phase accuracy performance. However, the extra

delay-locked loop doubles the overall power consumption.

Delay-locked loops (DLL) serve as a viable alternative for 4-phase QCG with low noise

contributions and good phase accuracy [20, 22]. On the other hand, the mismatch between

different delay stages makes it challenging to achieve 8-phase QCG with DLLs. In [20], a

quadrature delay-locked loop can only generate coarse 8-phase clocks with a phase error of up

to 6°.

Digitally controlled delay line (DCDL) can achieve high resolution phase tuning and thus

serve as a feasible method for QCG or quadrature error correction (QEC) [48, 49, 54]. Inverters

loaded with a configurable switched-capacitor bank are usually used to implement delay cells,

which can effectively reject the noise contribution. Hoewever, this approach requires on high-

18



resolution quadrature error detection and slicing circuit. What’s more, to cover a wide tuning

range, large amount of capacitors are required which occupies a considerable die area.

The QCG systems discussed above can be categorized as either closed-loop or open-loop.

Closed-loop QCG systems employ a detection circuit that continuously monitors and corrects

phase errors by dynamically adjusting QCG parameters in real time. This feedback mecha-

nism ensures excellent phase matching, though phase accuracy is ultimately limited by loop

gain constraints and device mismatches in the detection circuit. However, closed-loop designs

face significant challenges, including stability concerns, complex loop analysis, high power

consumption, and restricted tracking bandwidth—limitations that make them less attractive for

wireline applications, which often demand wide operational ranges.

In contrast, open-loop QCG eliminates the need for a tracking loop by leveraging self-

correcting behavior. Among open-loop implementations, injection-locked ring oscillators are

widely adopted due to their simplicity and compact design, despite inheriting the drawbacks

mentioned earlier. Beyond ILROs, few open-loop QCG or QEC solutions have been proposed

in the literature [13, 16].

In the next chapter, we will discuss and present the design of a novel open-loop QCG system,

which can address the common issues of traditional injection-lock methods such as duty cycle

degradation and narrow operation range.

2.4 Conclusion of this chapter

In this chapter, we have delved into the critical role of clock signals in wireline transceiver sys-

tems, emphasizing their significance in ensuring synchronization and facilitating efficient data

transmission. We explored the characteristics and requirements of clock signals, highlighting

the distinctions between wireline and wireless systems in terms of clock generation and imple-

mentation.

The discussion on RJ and DJ revealed how these timing variations can adversely affect the

performance of communication systems. We examined the sources of both types of jitter, as

well as their measurement techniques, which are essential for evaluating the integrity of clock

signals in high-speed applications.

Furthermore, we analyzed the implementation of clocking architectures tailored for multi-

lane wireline applications. The two primary components, global clock generation and local

clock generation, were outlined, showcasing how they work together to produce stable and low-

jitter clock signals. The chapter also reviewed various QCG designs, assessing their advantages
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and limitations in terms of phase accuracy, power consumption, and operational range.

Overall, this chapter underscores the importance of advanced clocking architectures in en-

hancing the performance of wireline transceivers. The insights gained from this exploration

lay the foundation for the development of innovative solutions in clock generation, which are

crucial for meeting the evolving demands of modern high-speed communication systems.
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CHAPTER 3

A QUADRATURE CLOCK GENERATORWITH AN
OPEN-LOOP QUADRATURE ERROR CORRECTOR

3.1 Proposed QCG with PI-based QEC

3.1.1 Architecture

The overall architecture of the proposed QCGwith open-loop QEC is shown in Figure (3.1). The

process begins with the duty cycle correction (DCC) circuit, which corrects duty-cycle errors

in the input reference clock. Next, a DCDL generates coarse quadrature-phase clocks with

relatively large phase errors. These errors are then further reduced by an open-loop two-stage

QEC circuit, which utilizes phase interpolation. Additionally, a finite state machine (FSM) is

implemented to enable automatic calibration of the DCC and the coarse correction of the delay

line.

 

 

Coarse QCG

Fine QECFSM for Calibration

DCD QED
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PI-QEC 

Stage#1

PI-QEC 

Stage#2
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0º/180º

θ/θ+180º

2

Figure 3.1: System architecture of the proposed QCG.

3.1.2 Open-loop QEC based on phase interpolation

The concept of the proposed QCG is described in Figure (3.2). DCDL produces two pairs of

differential clock signals with a phase difference of θ, denoted by CK_1P (0°)/CK_1N (180°)

and CK_2P (θ)/CK_2N (θ + 180°).
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Digitally Controlled Delay Line (DCDL)

PI-based QEC

PI

PI

PI

PI

CK_IN DCDL 

Code

CK_2P (θ)

CK_2P (180º+θ)

CK_1P (0°)
CK_1N (180°)

CK_1P

CK_2P

CK_1N

CK_2N

CK_1N

CK_2P

CK_1P

CK_2N

CK_IP 

(θ/2+θD1)

CK_IN 
(180°+θ/2+θD1)

CK_QP 
(90°+θ/2+θD2)

CK_QN 
(270°+θ/2+θD2)

(a)

CK_1P (0°/360°)

CK_IP (θ/2)

CK_2P (θ)

CK_QP (90°+θ/2)

CK_1N (180°)

CK_IN (180°+θ/2)

CK_2N (θ+180°)

CK_QN (270°+θ/2)

(b)

Figure 3.2: Proposed open-loop QCG with PI-based QEC. (a) Block diagram. (b) Vector dia-
gram
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The PI combines CK_1P with CK_2P, generating CK_IP with the phase of θ/2 + θD1, where

θ/2 is the result of middle-phase generation while θD1 is the probagation delay induced by PI

and buffers. Furthermore, by combining CK_2P and CK_1N, CK_QP can be generated with the

phase of θ/2 + 90° + θD2, ensuring a 90° phase difference between CK_IP and CK_QP if θD2
equals to θD1, where θD1=θD(θ) and θD2=θD(180°−θ). It will be discussed that θD1=θD can be

achieved without θ being exactly 90°. Similarly, CK_IN and CK_QN can be produced with the

rest of combinations. At this point, two differential clock pairs CK_IP (θ/2 + θD1)/CK_IN (θ/2

+ 180° + θD1) and CK_QP (θ/2 + 90° + θD2)/CK_QN (θ/2 + 270° + θD2) with quadrature phase

difference (90°) are produced.

In Figure (3.2b), a vector diagram is used to demonstrate the proposed idea. In the ideal case,

θD of each path should be identical, thus it is removed from the vector diagram for an intuitive

explanation.

3.1.3 Self-correction on duty cycle distortion

The proposed open-loop QEC circuit not only corrects quadrature phase errors but also au-

tonomously mitigates duty cycle distortion in the input clocks, a feature that surpasses other

open-loop QEC methods, such as injection-locked ring oscillators, which may inadvertently

degrade the duty cycle.

This feature is illustrated in Figure (3.3). Consider two pairs of differential clocks generated

by the DCDL with an initial delay of t (equivalent to θ in the phase domain) and a duty cycle of

48%. Transition timings are marked to calculate the delay and duty cycle. After the first stage
of QEC, the time delay between the I-phase and Q-phase clocks is calculated at 0.24T (86.4°),

with the I-phase clock maintaining a duty cycle of 48% and the Q-phase clock achieving a duty

cycle of 50%. When the generated I and Q clocks are fed into the second QEC stage, the delay

remains at 0.24T, while the duty cycles of the I-phase and Q-phase clocks adjust to 49% and 51%,
respectively. Notably, the original duty cycle distortion is reduced by half. In fact, the duty cycle

distortion and quadrature phase/time error are halved every two QEC stages. However, endless

cascading of QEC stages is impractical due to power overhead and induced noise. Consequently,

the limited duty cycle correction performance of the QEC necessitates the use of an initial DCC

for the input clocks to ensure optimal performance.
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Figure 3.3: QEC self correction on duty cycle distortion
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3.2 Circuit implementation

3.2.1 Digitally controlled delay line

The DCDL is used to generate a coarse 90° phase shift, which is then fine-tuned by the subse-

quent PI-based QEC. A DCDL with a load capacitor bank is widely used because of its simple

design and minimal jitter contribution. In this design, instead of placing all the load capacitors

at one stage, which could lead to longer transition times and thus higher sensitivity to noise, the

capacitors are distributed across multiple stages as Figure (3.4) presents. This distribution re-

duces the transition time at each stage, helping to minimize noise interference while maintaining

a wide tuning range. The 4-bit DCDL is designed with a tuning step of 1.2 ps, covering a delay

range of 20 ps. The simulated delays generated from the DCDL under different process corners

are illustrated in Figure (3.5).
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Figure 3.4: Digitally controlled delay line
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Figure 3.5: Simultaion results of DCDL
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3.2.2 Duty cycle correction

To ensure that the QEC produces an accurate 90° phase shift, it is important to minimize duty

cycle distortion in the input clock signal. For this purpose, a DCC circuit is included in the

system.

In this design, an off-chip single-ended clock is buffered, modified by DCC and then con-

verted to differential clocks. As shown in Figure (3.6), the DCC circuit consists of an inverter-

based buffer and configurable pull-up and pull-down current sources. When the pull-up current

is enabled, the falling transition time of the clock waveform becomes longer, while the rising

transition time becomes shorter, reducing the duty cycle of the output clock. On the other hand,

enabling the pull-down current increases the duty cycle of the output clock.

To allow fine adjustments to the duty cycle, a 6-bit digitally controlled current mirror is

used. This enables the pull-up and pull-down currents to be adjusted in small steps of 0.15%,
providing a tuning range of up to 10% in duty cycle. The simulated DCC performance under

different process corners are illustrated in Figure (3.8).
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Figure 3.6: Single-ended-to-differential conversion and duty cycle correction.
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3.2.3 Phase interpolator for QEC

Output phase accuracy of the proposed QCG relies significantly on PI’s linearity performance.

Commonly used PI includes voltage-Mode PI (VMPI) and current-mode PI (CMPI) [18, 20,

25].

The VMPI employs a straightforward wire-AND logic connection between two inverter out-

puts, representing the simplest implementation of a PI. However, this approach suffers from

highly nonlinear phase combining, making the output phase vulnerable to mismatch and PVT

variations.

The CMPI utilizes a common-source combiner with two transconductance (gm) stages, en-

abling linear phase combination when properly biased with an optimal input common-mode

voltage. While this architecture is well-suited for low-swing sinusoidal clocks, its performance

degrades with rail-to-rail square-wave clocks due to their rich harmonic content and large volt-

age swings, which introduce significant nonlinearities at the output.
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Non-linear combining
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CK1
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CKOUT

(a)
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Figure 3.9: Commonly used architectures of phase interpolators (a) Voltage-mode phase inter-
polator. (b) Current-mode phase interpolator. (c) Integrating-mode phase interpolator.
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Unlike VMPI and CMPI, integrating-mode PI (IMPI) shows simple circuitry, excellent lin-

earity, low noise contribution, and full compatibility to square-wave clocks [25, 26], and thus

serves as a good candidate for our QCG implementation. IMPI achieves phase interpolation by

combining two periodically bi-directional current sources as Figure (3.10a) shows. In [25], the

combining weights of the two current sources are modulated to achieve phase shifting. In our

QCG design, the current sources are equally weighted for producing an averaged phase. Two

trapezoid-shaped waveforms with a phase difference of 90° are generated on the load capacitor.

which are subsequently amplified to rail-to-rail signals by CML-to-CMOS (C2C) converters,

comparing the VX waveforms with a certain threshold and converting them to rail-to-rail sig-

nals while maintaining the 90° difference.

The schematic of IMPI is shown in Figure (3.10b). The charging and discharging currents are

implemented with PMOS and NMOS transistors respectively. M1,2,7,8 are switch transistors

used to enable current sources at different operating phases, whose gates are driven by PI’s input

clocks. M3,4,5,6 are current source transistors, controlled by a bias generation circuit.

Figure (3.11a) shows the schematic of C2C converter, which is consisted of an AC-coupling

capacitor and a self biased inverter. Note that the discrepancy between θD1 and θD2 majorly

comes from the C2C converters and associated buffers. Figure (3.11b) presents the simulation

results of the phase transfer characteristics of C2C converters. When the input θ is near 90°,

denoted by target region, the mismatch between θD1 and θD2 is rather small and negligible,

while the phase mismatch grows quickly outside target region. Therefore, it is necessary to

calibrate the initial input θ to the target region.

The proposed PI-based QEC achieves an error suppression ratio of 1/6 by post-layout sim-

ulation. However, substantial residual phase errors may still exist in the output clocks due to

nonideal factors, such as current mismatch and duty cycle distortion. Cascading multiple QEC

stages can improve performance, though power and noise must be considered. This work im-

plements a 2-stage QEC to balance these factors.
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3.2.4 Monte Carlo simulation results

A 500-run Monte Carlo simulation was performed to evaluate the 2-stage QEC performance

under mismatch. The input quadrature clocks have a 5° phase error and a 50% duty cycle. The

phase and duty cycle distribution of the output quadrature clocks is presented in Figure (3.12).

The output quadrature phase shows a standard deviation of 0.75° and a mean value of 90.05°

while the duty cycle presents a standard deviation of 0.32% and a mean value of 50.0%.

88 89 90 91 92

Output Qudrature Phase (°)

0

0.2

0.4

0.6

0.8

O
c
c

u
ra

n
c
e

σ=0.75°
μ=90.04°

(a)

49 49.5 50 50.5 51

Output Duty Cycle (%)

0

0.1

0.2

0.3

0.4

0.6

0.7

O
c
c

u
rr

e
n

c
e

σ=0.32%
μ=50%

0.5

(b)

Figure 3.12: Monte Carlo simulation of QEC. (a) Qudrature phase distribution. (b) Duty cycle
distribution.
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3.2.5 Digital calibration
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Figure 3.13: Digital calibration scheme.

The duty cycle error of the input clock and the initial quadrature phase error need to be detected

and calibrated. As shown in Figure (3.13) , a digital calibration scheme is implemented in

this work with duty cycle detection (DCD) and quadrature error detection (QED) circuits. RC

low-pass filters are used to detect the duty cycle mismatch of differential clocks, extracting the

DC components of the positive and negative signals. As illustrated in Figure (3.14), when the

duty cycle deviates from 50%, VP and VN will show voltage difference which can be sliced to

digital 0 and 1 by comparator. The quadrature phase error can also be detected and converted

to DC voltage using a passive mixer. The schematic of the QED passive mixer is shown in

Figure (3.15). The simulated DCD and QED transfer characteristics are shown in Figure (3.16),

with a detection sensitivity of 20.1 mV/% and 10.1 mV/°. Figure (3.16b) and Figure (3.16d)

33



present the distribution of output voltage with well-matched input. It shows a standard deviation

of 8.2 mV and 13.2 mV for DCD and QED respectively, corresponding to 0.4-% duty cycle and

1.3-° phase error.
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Figure 3.14: Duty cycle detection. (a) RC low-pass filter. (b) Operational principle.
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Figure 3.15: Schematic of passive mixer for QED.
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Figure 3.16: Simulated error detection characteristics. (a) DCD characteristics. (b) DCD zero
crossing voltage distribution. (c) QED characteristics. (d) QED zero crossing voltage distribu-

tion.

Auto-zeroing (AZ) comparators with offset cancellation are implemented to slice the de-

tectors’ output as 1 (above target) or 0 (below target) for the FSM to complete calibration [55,

56]. The schematic of the AZ comparator is presented in Figure (3.17), which consists of a pre-

amplifier, a StrongArm latch, an SR latch, offset storage capacitors and switches. The offset
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voltage of the comparators is simulated with a dynamic method [57]. Simulated comparator

offset voltage shows a standard deviation of 400 uVrms, corresponding to 0.02-% duty cycle and

0.04° phase resolution, which are sufficient in this application.
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VOUTN VOUTP

VINP VINN
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D LatchInput

Figure 3.17: Schematic of auto-zeroing comparator with offset cancellation.

The duty cycle of the input clock and the initial delay form DCDL need to be calibrated

for the QEC to produce accurate quadrature clocks. The calibration is performed in a binary-

search manner: comparators output detection results of 1 or 0, indicating the duty cycle/delay is

above or below the optimal value (50%/90°). Based on the detection results, a synthesized FSM
updates DCC/DCDL controlling codes to decrease or increase the duty cycle/delay.

When the duty cycle/delay gets near the optimal value, the comparator’s output starts to

toggle between 1 and 0, while the FSM updates the duty cycle and delay continuously. The

periodically changing parameters result in spurious tones or deterministic jitters in the output

clocks, illustrated in Figure (3.18a).

To address this issue, the FSM employs a pattern-detecting strategy to disable calibration:

consecutive comparator outputs are recorded. If the outputs are “00” or “11,” the system is

still in the binary search phase. Conversely, if the outputs alternate as “01” or “10” (toggling),

the parameters are likely near the optimal value. Once M consecutive toggling instances are

detected, the calibration is considered complete and is disabled. The flowchart of the FSM is
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illustrated in Subsection 3.2.5. By implementing this disabling strategy, the calibration termi-

nates properly, avoiding periodic parameter changes and thereby eliminating the output spur

issue, as Figure (3.18b) shows.

Additionally, when near the optimal region, small input differential voltage may confuse the

comparator due to its hysteresis and metastability, which leads to comparator randomly output-

ing 0 or 1. Considering this issue, detection depth is increased to 3 for better robustness.
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Figure 3.18: (a) Calibration without disabling strategy. (b) Calibration with disabling strategy.
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3.3 Design considerations

3.3.1 Non-ideal factors

The performance degradation of the proposed QCG come from four major factors: (1) amplitude

modulation to phase modulation (AM-PM) conversion of the C2C converter, (2) non-constant

integrating currents, (3) P/N mismatch, and (4) duty cycle distortion.
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Figure 3.20: AM-PM conversion of C2C converter.

AM-PM distortion. From the analysis in Section II, the generation of the 90° phase shift

seems irrelevant to the initial phase shift θ if the duty cycle is perfectly 50%. However, if

quadrature phase error from the DCDL is very large, meaning the initial θ is far away from 90°,

the voltage swings of PI output waveforms VX1 and VX2 will be quite different, as shown in

Figure (3.20). Due to the AM-PM conversion characteristics, C2C converters driven by VX1

and VX2 produce different probagation delays, introducing extra skews to I/Q paths. In other

words, θD of I/Q paths in Figure (3.2a) are not identical in this case. To minimize this effect,

DCDL should be calibrated to near 90°. Additionally, increasing the swings of VX1 and VX2

by utilizing a larger integrating current can help mitigate the AM-PM issue [26]. However, this

approach may introduce other complications, which will be addressed in the following section.
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Figure 3.21: Non-constant integrating currents

Non-constant integrating currents. The rising and falling slopes of the PI output waveform,

which effectively represent the current-to-capacitor ratio, should be sufficiently high to mini-

mize noise injection. This results in a large voltage swing that can also help mitigate the AM-PM

issue discussed previously. However, excessive voltage swings can push the transistors into their

triode regions, as illustrated in Figure (3.21), leading to non-constant charging and discharging

currents. Consequently, the performance of the QEC degrades due to these unwanted current

variations. Therefore, it is crucial to select an appropriate current level that avoids excessively
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large output swings while still providing adequate noise rejection and minimizing AM-PM con-

version.
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Figure 3.22: P/N mismatch

P/N mismatch. The mismatch between PMOS and NMOS transistors leads to discrepancies

in their charging and discharging currents. When this mismatch occurs in ideal current sources,

it generates a skewed waveform with a DC component that continues to either increase or de-

crease, as illustrated in Figure (3.22). In practical circuits, this trend can push the NMOS or

PMOS transistors into their triode regions, causing the waveforms to settle at a specific DC
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point. Although the AC-coupled C2C converter can level-shift the waveforms, the performance

of phase interpolation and QEC still suffers. To address this issue, a feedback loop can be im-

plemented to adjust the bias voltage of the PMOS or NMOS transistors, enabling them to track

the DC level to an optimal point.
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Figure 3.23: Duty cycle distortion

Duty cycle distortion. In a well-aligned differential pair, duty cycle distortion causes the

phase difference between CKP and CKN to deviate from the ideal 180°. As discussed in Sec-

tion II, the 90° phase shift is derived from averaging 0 and θ + 180°. Thus, any distortion in
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the initial 180° phase will inevitably lead to distortion in the generated 90° phase. Furthermore,

when duty cycle distortion affects ideal current sources, it results in a skewed waveform, again

causing the DC component to either increase or decrease in one of the waveforms, as shown in

Figure (3.23). In real-world circuits, this trend can similarly push the NMOS or PMOS tran-

sistors into their triode regions, ultimately leading to a settling at a specific DC point. Conse-

quently, the performance of phase interpolation and QEC degrades. While the proposed QEC

structure can partially alleviate the duty cycle distortion issue, it remains essential to calibrate

the input duty cycle distortion to ensure that QEC produces minimally mismatched quadrature

phases.
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3.3.2 Jitter contribution

The primary source of jitter in the proposed QCG system comes from device noise, which ac-

cumulates over successive stages. The slopes of the voltage waveforms determine the clock

sensitivity to noise, making it essential to maximize rising and falling slopes to minimize jitter

injection.

In the DCDL design, capacitor banks are distributed among multiple inverter stages to pre-

vent slow ramps at any single stage. In PI design, integrating currents are tuned across frequen-

cies to enhance slopes while maintaining transistors in the saturation region. The PI current

tuning can be potentially integrated with DCDL calibration.

To evaluate the QCG’s jitter performance, Figure (3.24a) presents phase noise plots for each

stage in parallel. The input reference clock’s phase noise is derived from measured data of

an external signal generator. Additionally, Figure (3.24b) summarizes the calculated additive

jitter contributions. The QCG introduces a total additive jitter of 42.39 fsrms, with each stage’s

contribution minimized through careful design. However, the DCC exhibits a slightly higher

jitter due to additional noise sources from the pull-up/pull-down currents.
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Figure 3.24: Jitter contribution of each stage. (a) Simulated output phase noise of each stage.
(b) Calculated jitter contribution.
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3.4 Measurement results

The proposed QCG is fabricated in 28-nm CMOS process with a core area of 0.0121 mm2,

including the DCC, DCDL, QEC, error detection circuits, comparators and FSM. The chip mi-

crograph and measured power breakdown are shown in Figure (3.25). The tested chip covers a

frequency range from 5 to 10 GHz and consumes 10.2-mW power at 10-GHz operation with a

0.9-V supply voltage.
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Figure 3.25: Fabricated QCG prototype. (a) Chip micrograph. (b) Power breakdown.
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Figure (3.26) presents themeasurement setup. A signal generator (R&S SMF100A) provides

a input clock which is splitted by a power divider into two signals, one serving as the input clock

of the DUT, the other serve as a reference clock to trigger the oscilloscope. A high-bandwidth

real-time oscilloscope (Keysight DSAV334A) capture the waveforms of reference clock and

output clock for measuring the quadrature phase error. A specturm analyzer (R&S FSW67) is

utilized to plot the phase noise of the reference and output clock. An off-chip SPI module (SUB-

20), controlled by the laptop, is connected to DUT through PCB to set the chip configuration.
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Figure 3.26: Testing setup. (a) Block diagram. (b) Photo of the testing environment.
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An on-chip multiplexer selects between the I and Q clocks. Since the I and Q clock expe-

rience the same skew introduced by the multiplexer, buffers, bonding wires and off-chip inter-

connects, the quadrature phase shift can be measured by subtracting I-to-reference delay from

Q-to-reference delay. Figure (3.27) shows the measurement results of phase error. The proposed

QCG achieves a quadrature error of ≤0.8° from 5 to 10 GHz.

Delay from reference to I-phase clock is 73.68ps Delay from reference to Q-phase clock is 98.62ps

Measured quadrature delay is 24.94ps (89.78° at 10GHz)
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Figure 3.27: Measurement of quadrature error. (a) Measurement at 10-GHz operation. (b)
Measured quadrature errors across different frequencies.
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Figure (3.28) plots the measured phase noise of reference and output clock at 10GHz. The

integrated jitter (10k-1GHz) of reference clock is 41.36fsrms. The jitter of output I and Q clocks

show a slight difference (I: 59.56fsrms, Q: 61.09fsrms), resulting from the different PI inputs.

  T3: I-Phase Clock (59.56fsrms)

  T4: Q-Phase Clock (61.09fsrms)

T2: Ref. Clock (41.36fsrms)

Figure 3.28: Measured phase noise of reference clock and output clocks.

Table (3.1) summarizes and compares the performance of the proposed QCG and the re-

cently published work on multi-phase generators. The proposed open-loop QCG achieves a

competitive performance in jitter, phase error and power efficiency.

Table 3.1: Comparison with recently published QCG

CICC’11 
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15003000N/A210001200012100Active Area (um2)

1.11.11.2/0.881.21.20.9Supply Voltage (V)
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3.5 Conclusion of this chapter

In this chapter, we proposed an novel approach of QCG with an open-loop QEC for wireline

application, which is composed of a DCDL and a 2-stage PI-based QEC with digital automatic

calibration. The inverter-based DCDL and buffers minimize the device jitter contribution. The

high-linearity integrating-mode PI circuitry and 2-stage correction structure enhance the QEC

performance. The digital automatic calibration for DCC and DCDL is performed with a pattern-

detecting disabling strategy, eliminating spurs from the output clocks. The proposed QCG gen-

erates quadrature clocks with high phase accuracy and low jitter while consuming only a small

portion of the system power.
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CHAPTER 4

CONCLUSION AND FUTUREWORK

4.1 Conclusion

The exponential growth of AI-driven applications and high-speed communication systems has

intensified the demand for precise, low-jitter clock generation in wireline transceivers. This

thesis addresses the critical challenge of generating multi-phase clocks with stringent phase

accuracy and jitter requirements, proposing a novel open-loop QCG architecture.

The key contribution of this work is the design and implementation of a 5–10 GHz quadra-

ture clock generator with digital automatic calibration. The proposed architecture combines a

DCDL and a two-stage PI-based QEC to achieve 0.8° phase accuracy across the operating fre-

quency range. By integrating DCC and a pattern-detecting digital calibration strategy, the design

mitigates deterministic jitter sources such as duty cycle distortion and quadrature phase error.

Fabricated in a 28-nm CMOS process, the QCG occupies 0.012 mm² of core area and consumes

10.2 mW at 10 GHz, demonstrating superior power efficiency compared to prior works. Mea-

sured results confirm 61.1 fs RMS jitter (integrated from 10 kHz–1 GHz), meeting the stringent

requirements of modern wireline systems.

The success of this work lies in its hybrid approach, balancing open-loop simplicity with

digital calibration robustness. The inverter-based DCDL minimizes jitter injection, while the

integrating-mode PI ensures high linearity and phase accuracy. This architecture provides a

scalable solution for high-speed wireline transceivers, particularly in AI-driven data centers and

high-bandwidth memory applications.

4.2 Future works

4.2.1 Potential improvements

In Subsection 3.3.1, we discussed several factors that can degrade QCG performance. DCDL

and DCC calibration can sufficiently mitigate C2C AM-PM distortion and duty cycle distortion.

Additionally, the issues of non-constant integrating currents and P/N current mismatch can be
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addressed with dedicated circuits.

The non-constant integrating current issue can be resolved by properly calibrating the pre-

set integrating current to limit the voltage swing on the load capacitor. At the same time, the

current should bemaximized, as a low current results in a slowwaveform slope (making it noise-

sensitive) and a small voltage swing (leading to AM-PM-induced phase errors). A suitable cur-

rent value that restricts the voltage swing to approximately 0.2 × VDD to 0.8 × VDD provides a

good trade-off. Note that the voltage swing is proportional to IU and inversely proportional to

frequency, implying that for a given swing, the optimal IU scales with frequency—exhibiting

the same behavior as the optimal DCDL value. Consequently, IU calibration can be combined

with DCDL calibration.

As discussed in Subsection 3.3.1, in addition to duty cycle distortion, P/N current mismatch

induces DC voltage drift. An analog loop can be implemented to detect this drift and adjust

the PMOS or NMOS gate voltage accordingly. A feasible solution, illustrated in Figure (4.1),

employs an RC low-pass filter to extract the DC voltage, which is then compared to a threshold

(set to VDD/2) using an operational amplifier to modulate the NMOS gate voltage.

CK2

CK1

VBP

CKOUT

VDD/2
M1

M3

M5

M7

Figure 4.1: Analog feedback loop detecting DC voltage drifting.

4.2.2 Complete clocking implementation

The current design focuses on standalone QCG performance. Future work should integrate the

proposed QCG into a full clocking subsystem, including global clock distribution networks and

PLLs. This would validate its compatibility with system-level timing constraints and enable

end-to-end jitter analysis in multi-lane environments.
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4.2.3 Integration with a multi-lane transceiver system

To evaluate practical efficacy, theQCG should be embeddedwithin amulti-lanewireline transceiver

prototype. Testing under real-world conditions—such as crosstalk, channel loss, and power

supply noise—would provide insights into its robustness and guide refinements for industrial

adoption.
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