
Leveraging 360° Cameras and Coordinated
Multi-Agent Systems for Scalable Indoor 3D

Reconstruction

by

Hoi Chuen Cheng

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfilment of the Requirements for
the Degree of Master of Philosophy

in the Department of Electronic and Computer Engineering

March 2024, Hong Kong

i

Signature redacted

Johnny Cheng

Johnny Cheng

Johnny Cheng

Johnny Cheng

Johnny Cheng
ii

Signature redacted

Signature redacted

Johnny Cheng

Johnny Cheng
iii

ACKNOWLEDGEMENTS

I want to express my most sincere and profound gratitude to my supervisor, Prof. Chik
Patrick Yue, for his guidance, support, and encouragement during my research journey. I have
never been more impressed by his discipline, willpower, and charisma. Under his supervision, I
learned many valuable research skills and life lessons that will fuel my future endeavors.

I also want to extend my deepest gratitude to Prof. Ling Shi for his continued support since
my undergraduate studies. His insightful advice on my research direction and methodology was
instrumental in my academic journey. His mentorship helped me achieve my first publication
and instilled in me valuable research skills that I continue to utilize today.

I am also very grateful to Prof. Shenghui Song for being my thesis committee member and
for his guidance during my undergraduate studies. His advice, particularly regarding career
choices, has led me to this accomplishment.

I want to express my deep appreciation to my seniors in OWL, Dr. Babar Hussain, Dr.
Frederick Ziyang Hong, and Dr. Yiru Wang, for pioneering in and paving the direction for my
research topic. I would also like to thank all the members and alumni from OWL, including but
not limited to, Dr. Wang Li, Dr. Bo Xu, Dr. Rehan Azmat, Mr. Chongyun Zhang, Ms. Zilu Liu,
Mr. Fuzhan Chen, Ms. Xinyi Liu, Ms. Tianxin Min, Mr. Johar Abdekhoda, Mr. Hamed Fallah,
Mr. Shaokang Zhao, Mr. Zhendong Li, Mr. Ruitao Ma and Ms. Shuo Feng for your assistance
with countless matters and also the joy we shared.

Last but not least, I wish to give my warmest regards to my family and friends, who never
cease to support me. Specifically, I wish to express my deepest appreciation to my parents, for
being the biggest inspiration of my life.

iv

TABLE OF CONTENTS

Title Page i

Authorization ii

Signature Page iii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Tables x

Abstract xi

Chapter 1 Introduction 1
1.1 Overview 1
1.2 Thesis Organization and Contributions 4

1.2.1 Chapter 2: Optimizing Communication in MAPF 4
1.2.2 Chapter 3: Leveraging 360° Cameras in 3D Reconstruction 5
1.2.3 Chapter 4: Data Collection Tool for 360° Cameras 5
1.2.4 Chapter 5: Conclusion and Future Works 5

Chapter 2 Optimizing Communication in Multi-Agent Path Finding 6
2.1 Introduction 6
2.2 Related Works 9

2.2.1 Multi-Agent Path Finding (MAPF) 9
2.2.2 MAPF via RL 10

2.3 Problem Setup 10
2.3.1 Formal Definition of MAPF Problem 10
2.3.2 Types of Conflicts 11
2.3.3 MAPF Environment 11

v

2.4 Architecture of the RL Model 12
2.5 Experiments 15

2.5.1 FOV Settings 15
2.5.2 Test Settings and Hardware Specifications 16

2.6 Result 16
2.6.1 Success Rate, Average Steps and Number of Communications 18
2.6.2 Network Step Time 18
2.6.3 Normalized Success Rate 20
2.6.4 Key Findings and Recommendations 21

Chapter 3 Leveraging 360∘ Cameras in 3D Reconstruction 22
3.1 Introduction 22
3.2 Related Works 24

3.2.1 3D Reconstruction 24
3.2.2 Visual-based Pose Estimation 26

3.3 Proposed Framework 26
3.3.1 ERP Conversion 26
3.3.2 Pose Estimation 29
3.3.3 Pose Extraction of Cube Map Views 29
3.3.4 3D Mesh Generation 30

3.4 Experiment and Evaluation 31
3.4.1 Comparison between 360° Camera and Perspective Camera 31
3.4.2 Quantifying Data Requirements for 3D Reconstruction using

360° Camera 32
3.4.3 Impact of Camera Man Removal on 3D Mesh Quality 33

3.5 Discussion 34

Chapter 4 Data Collection Tool for 360° Cameras 35
4.1 Introduction 35
4.2 Obtaining Video and IMU Data from 360° camera 36
4.3 Experiment 37

Chapter 5 Conclusion and Future Works 39
5.1 Conclusion 39
5.2 Future Works 39

vi

5.2.1 Communication-based MAPF 39
5.2.2 3D Reconstruction with 360° Cameras 40

References 41

Appendix A MAPF Performance of our RL model in 40 × 40 Map 48

Appendix B Data Structure of 360° Cameras’ Data Collection Tool 50

vii

LIST OF FIGURES

Figure 1.1 Conceptual system architecture of a multi-agent-based indoor 3D recon-
struction system 1

Figure 1.2 Thesis organization and contribution. 4

Figure 2.1 The image showcases two different field of view (FOV) settings: a 3 × 3
FOV on the left and a 7 × 7 FOV on the right. A red square represents
the central agent, while other agents are depicted as colored squares, with
their respective destinations indicated by colored flags. Grey squares rep-
resent obstacles, while white squares represent walkable tiles. Agents
falling within the yellow area, which represents the FOV of the red agent,
can communicate in a request-reply style [1]. 12

Figure 2.2 Success rate with varying FOV settings in 80 × 80 Map 16
Figure 2.3 Average steps with varying FOV settings in 80 × 80 Map 17
Figure 2.4 Number of communications with varying FOV settings in 80 × 80 Map 17
Figure 2.5 Network step time with varying FOV settings in 80 × 80 Map 19
Figure 2.6 Normalized success rate with varying FOV settings in 80 × 80 Map 20

Figure 3.1 Visualizing the front, right, back, and left views after converting ERP into
perspective images [2]. 23

Figure 3.2 Overview of the processing pipeline in converting an ERP into perspec-
tive images and corresponding poses. An ERP is shown in the top left
corner with a cube map projection overlaid on top, and the converted
perspective images are shown in the bottom left. On the right side, the
pose visualization graph illustrates the changes in the location and rota-
tion of the poses for every 50 frames. Each color represents a particular
view and its pose: yellow for the front, red for the right, blue for the back,
and green for the left [2]. 24

Figure 3.3 Overview of the ERP conversion process. 27
Figure 3.4 Overview of OpenVSLAM [3] 29
Figure 3.5 Qualitative 3D reconstruction results. (a) Ground truth LiDAR point

cloud vs 3D model (without semantics) generated by 360∘ camera’s data
(b) 3D model (with semantics) generated by perspective camera’s data vs
3D model (with semantics) generated by 360∘ camera’s data [2]. 31

Figure 3.6 Comparing F-score between perspective camera, 360∘ camera, and 360∘
camera with camera man filtered. The F-score is evaluated for varying
numbers of frames. [2]. 33

Figure 4.1 System diagram of Theta-IMU 36
Figure 4.2 (a) Theta-IMU data snapshot (b) Data transfer panel on a computer [4] 37
Figure 4.3 Examples of captured ERP. (a) is captured when the 360° camera is mounted

on a robot. (b) is captured when the 360° camera is handheld 38
Figure 4.4 Captured accelerometer, gyroscope, and magnetometer data along z-axis 38

viii

Figure A.1 Success rate with varying FOV settings in 40 × 40 Map 48
Figure A.2 Average steps with varying FOV settings in 40 × 40 Map 48
Figure A.3 Number of communication with varying FOV settings in 40 × 40 Map 49

ix

LIST OF TABLES

Table 2.1 Reward structure 12
Table 2.2 Network step time ratio of different FOV 19

x

Leveraging 360° Cameras and Coordinated
Multi-Agent Systems for Scalable Indoor 3D

Reconstruction

by Hoi Chuen Cheng

Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology

Abstract

Large-scale multi-robot 3D reconstruction of indoor environments poses challenges for robotics,
virtual reality, construction, and more applications. This thesis proposes a scalable system ar-
chitecture to advance the distributed multi-robot 3D reconstruction field and addresses problems
in robot localization, coordination, and vision processing. A decentralized and communication-
based multi-agent path finding framework is first developed to coordinate path planning among
fleets of mobile robots through reinforcement learning. We further improve the communication
overhead by a Field-of-View (FOV) study and selectively sharing information between neigh-
boring agents. The FOV study reveals that smaller FOV sizes significantly reduce computational
costs without compromising performance.

Additionally, an efficient 3D reconstruction pipeline is developed utilizing 360° cameras.
This leverages equirectangular projection conversion to facilitate deep learning-based 3D recon-
struction models. Experimental evaluations demonstrate that 360° camera data achieves more
accurate and efficient scene reconstruction than perspective cameras. In summary, communica-
tion in multi-agent path finding, 360° imaging processing, and vision-based 3D reconstruction
have been explored and developed in this work. The resulting framework facilitates fleet-scale
3D reconstruction applications in site monitoring and beyond.

xi

CHAPTER 1

INTRODUCTION

1.1 Overview

Figure 1.1: Conceptual system architecture of a multi-agent-based indoor 3D reconstruction
system

3D reconstruction has increasingly become an essential area of focus due to its ability to
generate 3D representations from images or depth data. Applications for 3D reconstructions
are widespread, spanning domains such as virtual and augmented reality technologies [5, 6],
robotics [7], construction processes involving Building Information Modelling (BIM) [8, 9],
and autonomous navigation in self-driving vehicles [10, 11]. Furthermore, automated 3D scene
modeling has a significant advantage in maintaining objects’ fine-grained details and spatial
contexts without much human labor. This technology enables robots with 3D perception to
better perceive their surroundings, while humans can gain a deeper understanding of digital
environments through 3D visualization.

As the intelligent construction industry and related fields such as surveillance, robotics, and
inspections continue to develop and expand, core enabling technologies that power these sectors
are becoming increasingly crucial. The degree of intelligence integrated into systems directly af-

1

fects the quality and efficiency of task completion and indirectly impacts value creation. Within
the construction domain, conventional inspection methods that rely heavily on human workers
utilizing handheld devices inevitably result in many issues. These include low efficiency due to
the time required to gather data, high costs associated with personnel and equipment usage, an
inability to provide support over extended periods consistently, uncertain coverage of inspec-
tion areas, and safety risks when people must enter dangerous or unstable sites. Advancements
in technologies like machine learning have the potential to help mitigate these challenges by
automating inspection and localization functions.

Coordinating multiple robots has considerable potential to improve the accuracy and effi-
ciency of 3D reconstruction efforts. This multi-agent approach is incredibly impactful in more
complex and more extensive environments. Beyond enhancing productivity, fleets can save time
by closely monitoring construction sites to ensure work adheres to schedules and safety compli-
ance. Effective oversight enables improved collaboration between project members, reducing
delays and expensive issues. With up-to-date tracking, construction firms can meet intended
timelines and deliver projects as planned. As technologies advance, leveraging multiple robots
for 3D reconstruction becomes increasingly essential.

However, large-scale indoor 3D modeling presents challenges. Applications must first re-
solve the Multi-Agent Path Finding (MAPF) problem to define collision-free trajectories within
operational spaces. Calculating optimal MAPF solutions suffers enormous computational com-
plexities, spurring algorithm development. Nonetheless, directly employing such solutions fails
to accommodate fleets efficiently for expansive areas. Some techniques adopt search strategies
like Conflict-based Search, while others reframe MAPF as satisfiability problems. However,
systems using these methods typically scale only for small agent teams. The immense overload
of direct employment introduces barriers to coordinating large reconstruction fleets. Decen-
tralized methods modeling MAPF as partially observable games merit exploration to distribute
computation across aware, autonomous robots.

While 3D reconstruction techniques commonly rely on complicated arrangements of nu-
merous cameras or specialized equipment [12] to function correctly, the popularity and uptake
of 360° cameras have grown significantly in recent times. 360° cameras provide a more all-
encompassing Field-of-View (FOV) than regular perspective cameras, rendering them appro-
priately suited for various uses. For example, 360° cameras are now commonly employed in the
construction sector since they permit a more practical approach to overseeing entire construction
sites through a single vantage point.

360° cameras provide additional key benefits for large-scale 3D reconstruction using multi-

2

robot systems. Unlike traditional cameras requiring complex arrangements, a single 360° camera
simultaneously captures a comprehensive spherical panorama of the entire environment. This
allows each robot to acquire a holistic view using only one image, reducing redundant data
collection across a fleet. The wide FOV also facilitates collaboration, where robots can effi-
ciently localize themselves and communicate intentions based on the improved awareness of
other agents and obstacles. Together, these attributes of 360° cameras make them especially
well-suited for scalable 3D reconstruction applications with coordinated robot teams, in con-
trast to traditional multi-camera systems that cannot capture and leverage such holistic spherical
contexts.

To address the calibration complications arising when utilizing cameras featuring an ultra-
wide FOV, we introduce a potential method for handling the calibration challenges. Our ap-
proach eliminates the need for oversized checkerboard calibration patterns that are typically nec-
essary for modeling lens distortion across an immense angular range. Concurrently, we project
the commonly used yet distorted Equirectangular Projection (ERP) format of 360° panoramic
imagery onto a cube map resembling orthographic perspective views. This projected representa-
tion facilitates compatibility with deep learning networks pre-trained on undistorted perspective
images, broadening the applicability of low-cost commercial 360° cameras to computer vision
tasks involving 3D scene reconstruction. By resolving distortion and aligning the panoramic
visual domain with established deep learning models, our technique aims to increase further the
usefulness of affordable wide-angle cameras in applications ranging from virtual/augmented
reality to robotic vision.

3

1.2 Thesis Organization and Contributions

Figure 1.2: Thesis organization and contribution.

This thesis focuses on robot localization, 3D reconstruction using 360° cameras, and a data
collection tool for 360° cameras. An illustration of the thesis organization is presented in Figure
1.2.

1.2.1 Chapter 2: Optimizing Communication in MAPF

This chapter presents a decentralized and communication-based MAPF framework utilizing re-
inforcement learning. This framework aims to coordinate path planning among fleets of mobile
robots operating in a partially observable grid environment. The focus is improving communi-
cation overhead through selective information sharing between neighboring agents and a Field-
of-View (FOV) study.

4

1.2.2 Chapter 3: Leveraging 360° Cameras in 3D Reconstruction

This chapter proposes a novel vision-based 3D reconstruction pipeline for 360° cameras. The
pipeline utilizes equirectangular projections to facilitate the application of deep learning-based
models for 3D reconstruction. Experimental evaluations demonstrate the superiority of 360°
camera data in achieving more accurate and efficient data collection compared to conventional
perspective cameras.

1.2.3 Chapter 4: Data Collection Tool for 360° Cameras

This chapter describes a data collection tool designed to acquire video and IMU data from 360°
cameras to facilitate various experiments.

1.2.4 Chapter 5: Conclusion and Future Works

This chapter summarizes the thesis and discusses potential future works in communication-based
MAPF and 3D reconstruction with 360° cameras.

5

CHAPTER 2

OPTIMIZING COMMUNICATION IN MULTI-AGENT
PATH FINDING

2.1 Introduction
The utilization of multiple robots collaborating on tasks offers immense potential to enhance the
accuracy and efficiency of 3D reconstruction efforts significantly. This multi-agent approach
proves to be particularly impactful in complex and expansive environments where a single robot
may face limitations. By leveraging multiple robots’ collective capabilities and diverse perspec-
tives, the accuracy of the collaborative 3D reconstruction can be greatly improved, capturing a
more comprehensive representation of the environment.

In addition to boosting accuracy and productivity, utilizing multiple robots equipped with
up-to-date tracking and 3D reconstruction technologies empowers construction firms to adhere
to their intended timelines and deliver projects as planned. By continuously capturing and an-
alyzing data from various robot perspectives, construction processes can be closely monitored,
enabling proactive decision-making and timely adjustments. This level of real-time tracking
and analysis facilitates efficient coordination among the robots. It enables project managers
to make informed decisions, optimize resource allocation, and promptly address emerging is-
sues. Furthermore, a coordinated multi-agent or multi-robot system can significantly offload
human workers for a better work environment. In the context of construction sites, where dif-
ferent kinds of accidents can happen, a safer and more efficient solution must be provided to the
workers. Using multiple robots, larger construction site areas of hazardous zones can be cov-
ered simultaneously, enabling comprehensive monitoring from diverse angles and viewpoints.
This enhanced surveillance capability contributes to improved safety measures for personnel,
mitigating the risk of accidents or injuries.

The successful execution of applications involving 3D reconstruction in expansive indoor or
outdoor areas, whether construction sites or home environments, necessitates coordinating mul-
tiple robots to model the space comprehensively and efficiently. However, to enable such ap-
plications, we must first address the challenges posed by the Multi-Agent Path Finding (MAPF)

6

problem [13]. This problem involves determining a collection of collision-free paths within the
operational space, which presents significant computational complexities.

Various algorithms have been developed to tackle the MAPF problem. However, directly
applying these algorithms may not efficiently accommodate fleets of robots aiming to leverage
their collective capabilities for large-scale indoor 3D modeling of expansive areas. Some ap-
proaches adopt search-based strategies like Conflict Based Search (CBS) [14, 15], while others
reformulate the problem as a Boolean Satisfiability Problem (SAT) [16]. However, systems re-
lying on these methods typically have limitations in scaling up to many participating agents. The
computational burden of directly employing these techniques introduces substantial barriers to
coordinating large teams of robots engaged in 3D reconstruction tasks. The sheer scale of the
operational space and the number of participating robots can overwhelm existing algorithms,
resulting in inefficient planning and increased computation time.

Efforts are underway to leverage techniques such as distributed optimization, swarm robotics,
and decentralized control to coordinate and plan large-scale multi-robot systems for 3D recon-
struction. These advancements address the computational overload and scalability issues in-
herent in existing methods. Particularly, researchers have addressed the scalability issues of
centralized techniques for MAPF by exploring decentralized execution methods [17–20] using
Imitation Learning (IL) and Reinforcement Learning (RL). These methods model MAPF as a
partially observable Markov game, allowing agents to make decisions based on localized obser-
vations instead of relying on a centralized planner with global information. This reduces over-
head and computational demands, enabling coordination among agents as team sizes increase.
RL-based methods incorporate behavior cloning [17, 18] to minimize divergence during train-
ing, while other techniques utilize heuristics [21] to expedite convergence. These decentralized
techniques show promise in enabling collaborative large-scale 3D reconstruction applications
using fleets of robots.

Recent studies have significantly improved coordination in multi-agent systems through en-
hanced communication strategies. Previous approaches emphasized broadcast messaging [20–
22], where agents indiscriminately share information with surrounding agents. While broadcast-
ing messages had advantages over earlier methods, it generates significant overhead as not all
exchanged data equally contributes to decision-making. Additionally, extraneous information in
messages could confuse agents and potentially hinder learning dynamics.

To address these challenges, frameworks [23–27] have been developed to minimize com-
munication costs. In particular, [27] explores selective communication strategies in the MAPF
setting, where agents only communicate with neighboring agents expected to influence imme-

7

diate actions. This approach balances coordination and efficiency in large fleets and optimizes
information sharing between agents. This offers a promising solution to reduce the overhead
associated with broadcast schemes while enabling cooperation necessary for distributed multi-
agent coordination.

While the advancement of the communication-based MAPF framework brought huge im-
provements in solving MAPF problems, researchers still overlooked the importance of choosing
a suitable FOV for agents in a multi-agent system. The FOV setting of a multi-agent system is
essential for the following reasons.

1. Perception and Navigation: The FOV of an agent determines the ability to perceive in-
formation and be aware of opportunities in a given environment. It helps the agent to
concentrate on its immediate surroundings, with the same effect as decreasing the detec-
tion distance of a LiDAR sensor. In the context of navigation and obstacle avoidance,
information perceived is essential for the agent to find the best paths to its goal and decide
how to maneuver itself in the environment.

2. Energy Efficiency: The FOV of an agent can greatly affect its energy efficiency. A larger
FOV allows the agent to take in more information with a broader perspective, but it also de-
mands more computational resources to maintain and processing power to operate. On the
contrary, a smaller FOV reduces the agent’s computation load while providing a more fo-
cused perspective. This is particularly relevant for resource-limited environments, where
the agent might need to work for a prolonged period without access to an energy source.

3. Coordination and Collaboration: The FOV plays a crucial role in the agent’s ability to
collaborate with neighboring agents. When two agents have overlapping FOVs, they can
effectively share information and communicate, enabling them to work together towards
a shared objective. However, an excessively large FOV can result in unnecessary com-
munication and potentially confuse the agent. Finding the right balance in FOV size is
important to optimize collaboration while avoiding information overload.

4. Security and Privacy: FOV addresses security and privacy concerns by controlling the
data that agents can access. By limiting the information an agent can perceive or share,
FOV safeguards sensitive data, preventing unintentional disclosure or privacy issues. Ad-
ditionally, FOV acts as a protective measure against malicious actors by restricting their
access to data. This control over the amount of data accessible through the FOV helps
enhance security and privacy in multi-agent systems.

While a larger FOV provides more information to an agent, there are advantages to using

8

a smaller FOV. A smaller FOV requires less computational load, making decision-making and
reaction times faster, which is especially beneficial for agents with limited hardware resources.
Moreover, a narrower FOV allows the agent to focus on its immediate, more critical surround-
ings. Additionally, a smaller FOV can conserve energy, prolonging battery life, which is partic-
ularly advantageous in settings with limited charging sources. In some cases, a smaller FOV can
also address security concerns by restricting the data perceived and transmitted by the agent.
Therefore, when designing and deploying robotic multi-agent systems, careful consideration
must be given to the size and scope of the FOV. Ideally, the FOV should be sufficient for navi-
gation and collaboration while remaining energy-efficient.

In our experiments studying the selection of FOV and its impact on performance and com-
munication overhead in MAPF tasks, we discovered that different FOV settings could signifi-
cantly affect the system’s performance. Additionally, we propose a way to evaluate performance
in terms of computation cost, enabling researchers and engineers to understand the trade-offs
when designing cost-efficient systems. These findings are particularly relevant in technologi-
cal advancements, where multi-agent 3D reconstruction is gaining prominence. The continuous
growth in robot autonomy, communication, and coordination algorithms enables seamless col-
laboration between robots, further enhancing their collective capabilities. With the ability to
navigate multiple agents efficiently through various optimizations, industries such as construc-
tion, manufacturing, and surveillance can benefit from improved productivity, ultimately leading
to cost savings and better outcomes.

2.2 Related Works

2.2.1 Multi-Agent Path Finding (MAPF)

While approximate optimal solutions are available for MAPF [28], it remains an NP-hard prob-
lem. Traditional MAPF planners can generally be categorized into coupled, decoupled, and
dynamically coupled methods. Coupled methods, such as A*, face significant challenges due
to the curse of dimensionality. On the other hand, decoupled methods, like the one described
in [29], can efficiently plan and modify paths for collision avoidance in low-dimensional search
spaces. However, it’s important to note that these decoupled techniques may not guarantee
completeness, as they only consider a limited portion of the joint configuration space [30].
Dynamically-coupled techniques allow broader agent interactions while avoiding planning in
the entire configuration space. For instance, Conflict Based Search (CBS) and its variants [14,

9

15, 31] avoid searching in higher dimensional space by defining a set of constraints.

2.2.2 MAPF via RL

Significant progress has been made in single-agent path planning using RL, such as [32, 33].
Recently, researchers have turned their attention to applying RL to solve MAPF problems, often
relying on expert guidance from existing planners. For example, PRIMAL [17] utilizes the OD-
recursive-𝑀∗ (ODrM*) planner [34], MAPPER [19] uses A*, and Global-to-Local Autonomy
Synthesis (GLAS) [35] incorporates a graph-based planner [36]. Specifically in PRIMAL, an
Asynchronous Advantage Actor-Critic (A3C) network is the RL module, while behavior cloning
is performed using the ODrM* planner. However, these expert planners face computational chal-
lenges as the number of agents increases, and the paths designed for single-agent environments
may not be optimal for multi-agent scenarios.

One possible solution is to leverage communication to foster collaboration among agents.
Recent examples include Targeted Multi-Agent Communication (TarMAC) [24] and Graph Neu-
ral Network (GNN) approaches [20], which exploit communication to enhance collaboration.
Another approach, Decision Causal Communication (DCC) [27], builds upon the ideas of DHC
[21] for selective communication with neighboring agents. This selective communication re-
duces redundancy in information exchanges and significantly reduces communication overhead.

2.3 Problem Setup
Models are trained and evaluated using the classical MAPF benchmark described in [13]. The
benchmark defines the following guidelines:

1. Agents in the environment can perform one of five actions on each time step: up, down,
left, right, or stop.

2. An endpoint for evaluation is reached when all agents have arrived at their designated
destinations or the maximum number of steps is reached.

2.3.1 Formal Definition of MAPF Problem

In the classical MAPF problem, an undirected graph 𝐺 = (𝑉 , 𝐸) represents the environment,
where 𝑉 is the set of vertices and 𝐸 is the set of edges. The start and goal vertices for 𝑛 agents are
defined as {𝑠1, …, 𝑠𝑛} ∈ 𝑉 and {𝑑1, …, 𝑑𝑛} ∈ 𝑉 , respectively. Agent movements correspond to
traversing edges in the graph (i.e., (𝑣, 𝑣′) ∈ 𝐸). An action sequence 𝜋𝑖 = {𝑎1, …, 𝑎𝑡} describes

10

the actions taken by agent 𝑖 from the start to time 𝑡. The location of agent 𝑖 at time 𝑡, 𝑙𝑖(𝑡), is
determined by sequentially applying the actions in 𝜋𝑖 starting from 𝑠𝑖. A MAPF solution consists
of n action sequences 𝜋 = {𝜋1, …, 𝜋𝑛} that determine the paths for all n agents from their start to
goal locations while avoiding collisions, represented as occupying the same vertex at the same
time step. The task is to find collision-free action progressions 𝜋𝑖 for each agent 𝑖 that solve the
combined constraints of the MAPF problem over 𝐺.

2.3.2 Types of Conflicts

As described in [13], the MAPF problem allows for different definitions of conflict between
agents. However, the works surveyed in [13] and the present study all prohibit the following two
types of collisions:

1. Vertex collision: This occurs when two agents 𝑖 and 𝑗 attempt to occupy the same vertex
at the same time 𝑡, such that 𝑙𝑖(𝑡) = 𝑙𝑗(𝑡).

2. Edge collision: An edge collision arises if agents 𝑖 and 𝑗 try to traverse the same edge(𝑣, 𝑣′) ∈ 𝐸 simultaneously, meaning 𝑙𝑖(𝑡) = 𝑙𝑗(𝑡).
Specifically, the approaches considered forbid scenarios where multiple agents would in-

tersect at either a shared position on 𝐺 during any given time of agent motion planning and
execution.

2.3.3 MAPF Environment

The predefined MAPF problem occurs in a discrete grid environment where the 𝑛 agents navi-
gate simultaneously. Within a 𝑘 × 𝑘 map containing 𝑛 agents, each agent is assigned a unique
start location and goal position. Agents can traverse this grid world through the four possible
movements at each time 𝑡, or remaining stationary. Consequently, the action space available to
each agent contains five options (i.e., up, down, left, right, or stop).

To model real-world deployment scenarios more realistically, we consider the MAPF task
from the partially observable perspective of each agent. This constrained FOV simulates an
agent’s limited awareness when making navigation decisions. Details regarding FOV settings
used in this work are provided in Section 2.5.1.

The reward structure, shown in Table 2.1, was adopted from DHC [21] and DCC [27]. To
encourage agents to cede paths to others when there are blockages, remaining on non-goal ver-
tices is penalized. While such behavior is not as heavily penalized as in the PRIMAL [17] and

11

Figure 2.1: The image showcases two different field of view (FOV) settings: a 3 × 3 FOV on
the left and a 7 × 7 FOV on the right. A red square represents the central agent, while other
agents are depicted as colored squares, with their respective destinations indicated by colored
flags. Grey squares represent obstacles, while white squares represent walkable tiles. Agents
falling within the yellow area, which represents the FOV of the red agent, can communicate in
a request-reply style [1].

MAPPER [19]. This reward design aims to allow the model to learn coordinated multi-agent
behaviors focused on collective performance throughout decentralized decision-making.

Table 2.1: Reward structure
Actions Reward

Move (Up/Down/Left/Right) -0.075
Stay on goal vertices 0

Stay on non-goal vertices -0.075
Collision -5

Completion 3

2.4 Architecture of the RL Model
The RL model architecture used in this work adopts key elements from [21] and [27]. In par-
ticular, [21] enabled inter-agent communication while [27] featured selective communication
inspired by Individually Inferred Communication [23]. In our experiment, the decentralized
multi-agent RL model contains four components. First, an observation encoder processes local
observations for each agent. Next, a decision causal unit [27] determines which neighbor to com-
municate with. A communication block [21] then shares information amongst relevant agents

12

and outputs message embeddings. Finally, a Dueling Deep Q-Network (DQN) [37] processes
these embeddings and selects the optimal action.

Each agent receives a 6-channel input tensor of dimensions 𝑙 × 𝑙 × 6 as input, where 𝑙 × 𝑙
represents the size of the agent’s FOV. This input contains two binary matrices indicating the
locations of other agents and obstacles observed within the agent’s local view. It also includes
four heuristic channels derived from DHC [21], corresponding to the up, down, left, and right
actions. Within these action channels, positions that move the agent closer to its goal are marked
with a one, while other locations are marked with zero.

First, the observation encoder generates modified local observation embeddings {𝑒𝑖,−𝑗}𝑗∈ℕ𝑖 ,
based on excluding each neighbor 𝑗 from 𝑖’s observation {𝑜𝑖,−𝑗}𝑗∈ℕ𝑖 . ℕ𝑖 is defined as the neigh-
boring agents within agent 𝑖’s FOV. To determine whether communication should be triggered
between agent 𝑖 and its neighbors ℕ𝑖, the decision casual unit assesses neighbor influences on 𝑖’s
decision making. These embeddings are input to the Dueling DQN, which produces provisional
actions ̃𝑎𝑖 from the original observation, and { ̃𝑎𝑖,−𝑗}𝑗∈ℕ𝑖 from the modified observations lacking
individual neighbor 𝑗. By contrasting ̃𝑎𝑖 to { ̃𝑎𝑖,−𝑗}𝑗∈ℕ𝑖 , the communication scope is defined as
neighbors whose exclusion causes { ̃𝑎𝑖,−𝑗}𝑗∈ℕ𝑖 to differ from ̃𝑎𝑖, i.e.,ℂ𝑖 = {𝑗| ̃𝑎𝑖 ≠ ̃𝑎𝑖,−𝑗}𝑗∈ℕ𝑖 ⋅ (2.1)

This identifies agents that are likely to impact 𝑖’s navigation, thus enabling selective communi-
cation.

To enhance efficiency, communication between neighbors takes place using a request-reply
approach. Given a defined communication scope ℂ𝑖, both the modified observation embedding𝑒𝑖 generated by agent 𝑖’s observation encoder and the relative positions 𝑙𝑖 of neighbors, are passed
from agent 𝑖 to each corresponding agent 𝑗 ∈ ℂ𝑖 within its FOV. Inside the communication block,
the concatenation of 𝑒𝑖 and 𝑙𝑖 is projected into key and value vectors with matrices 𝑊 ℎ𝐾 (Equation
2.2) and 𝑊 ℎ𝑉 (Equation 2.3), respectively. Similarly, the message 𝑒𝑗 undergoes projection into
a query vector using matrix 𝑊 ℎ𝑄 . For each agent 𝑗, the receiving scope 𝕆𝑗 consists of agent ̄𝑖
where 𝕆𝑗 = { ̄𝑖|𝑗 ∈ ℂ ̄𝑖}. The set 𝕆𝑗+ is represented as {𝕆𝑗, 𝑗}. The calculation of the relation
between agent 𝑗 and each sending agent 𝑖 ∈ 𝕆𝑗+ in the ℎ-th attention head is determined by

𝜇ℎ𝑗𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑊 ℎ𝑄 𝑒𝑗 ⋅ (𝑊 ℎ𝐾 [𝑒𝑖, 𝑙𝑖])𝑇
√𝑑𝐾] , (2.2)

with normalization through √𝑑𝐾 and 𝑑𝐾 as the key dimension. The outputs of the attention

13

heads are combined across 𝐻 heads through concatenation and then fed into a neural network
layer 𝑓𝑜 to produce the final output ̂𝑒𝑗 :

̂𝑒𝑗 = 𝑓𝑜
⎡⎢⎢⎣𝑐𝑜𝑛𝑐𝑎𝑡 ⎡⎢⎢⎣ ∑𝑖∈𝕆𝑗+

𝜇ℎ𝑗𝑖𝑊 ℎ𝑉 [𝑒𝑖, 𝑙𝑖], ∀ℎ ∈ 𝐻⎤⎥⎥⎦
⎤⎥⎥⎦ . (2.3)

The Gated Recurrent Unit (GRU) is utilized to aggregate the output ̂𝑒𝑗 and the initial ob-
servation embedding 𝑒𝑗 . The resulting output of the GRU, denoted as 𝑒′𝑖 , is then used as a new
input message for the subsequent round, repeating the operations described in Equations 2.2 and
2.3. The final output of the entire communication module is represented as 𝑒″𝑖 . By leveraging the
GRU, inputs are aggregated across time steps, allowing for the propagation of updated neighbor-
aware embeddings throughout the sequential request-reply communication process. Through
this targeted exchange of embedding information and spatial context between connected agents,
efficient cooperative decision-making in multi-agent coordination is enabled.

A Dueling DQN model is employed to estimate the Q-value, utilizing advantage functions
and considering the outputs from the communication block. Initially, we compute the mean of
the advantages 1|𝑁| ∑𝑎 𝐴(𝑒″𝑖))
, with 𝑁 representing the size of the action space. To get the final Q-values, we perform a
stabilization, which involves subtracting the advantage value from the advantage mean and in-
corporating the state value as a final adjustment. The formula is described in

𝑄𝑖,𝑠,𝑎 = 𝑉𝑠(𝑒″𝑖) + [𝐴(𝑒″𝑖) − 1|𝑁| ∑𝑎 𝐴(𝑒″𝑖))] . (2.4)

Once the Q-values are obtained from the DQN model, we calculate a multi-step Temporal
Difference (TD) error. The TD error is then utilized to update the model parameters by mini-
mizing the mean squared error between the predicted Q-values and the total discounted rewards.
The process is illustrated in

𝐿(𝜃) = 𝑀𝑆𝐸(𝑅𝑡 − 𝑄𝑠𝑡,𝑎𝑡(𝜃)), (2.5)

The total discounted rewards, denoted as 𝑅𝑡, are the sum of rewards at each time step. This
summation includes future rewards up to a certain horizon, as captured by the term 𝑅𝑡 = 𝑟𝑡 +𝛾𝑟𝑡+1 + ⋯ + 𝛾𝑛𝑄𝑠𝑡+𝑛,𝑎𝑡+𝑛(̄𝜃). In this equation, 𝛾 represents the discount factor applied to future

14

rewards, and ̄𝜃 represents a periodic copy of the model parameters 𝜃 maintained by the target
network.

2.5 Experiments

2.5.1 FOV Settings

As previously mentioned, our multi-agent RL approach employs a decentralized, communication-
enabled model to facilitate robot coordination. A crucial element of this model is the commu-
nication module, which enables information sharing between agents based on their designated
communication scopes. The agents’ FOV is pivotal in defining these communication scopes, as
depicted in Figure 2.1. The FOV corresponds to the perception range of the agents, such as that
provided by LiDAR or ultrasonic sensors. This highly affects an agent’s perception, navigation,
and effective collaboration with other agents in its environment. A wider FOV grants the agent
access to more information, offering a broader perspective of its surroundings.

Conversely, opting for a narrower FOV presents advantages, such as reduced computational
load, enhanced energy efficiency, improved collaboration, and heightened security considera-
tions. Optimizing the FOV of the agents becomes increasingly important as it strikes a balance
between reducing computational demands associated with coordinating larger communication
scopes and enhancing overall performance. Therefore, investigating the impact of different FOV
settings on performance and computational requirements contributes to the design of scalable
multi-agent systems.

FOV governs the information intake and communication scope of agents during MAPF tasks.
Our research examines the impact of FOV on performance and communication overhead. As-
suming a fully observable environment is impractical in large-scale environments like ware-
houses and factories, we must ensure that the FOV size or the partially observable view of the
agent, denoted as 𝑙 × 𝑙, is smaller than the map size, represented as 𝑘 × 𝑘, i.e., 𝑙 < 𝑘.

Minimizing the FOV intuitively reduces the amount of information, conserving bandwidth
for path planning and networking. An optimal FOV should maximize energy efficiency without
significantly compromising performance. To explore more energy-efficient FOV options, we
conducted experiments with various sizes on top of the 9×9 FOV used in DCC, DHC, and other
related research. It is worth noting that these works have overlooked the exploration of different
FOV sizes and have defaulted to a fixed size of 9 × 9. In light of this, we have chosen the 9 × 9
FOV configuration as our initial setup for baseline evaluation and analysis. In addition, the FOV

15

width and height must be odd to center the agents, making 3 × 3 the minimum feasible size.
Additionally, we investigated the impact of increased information intake on decision-making
and performance by evaluating larger FOVs.

Our curriculum training began with 2 agents on a 10×10 map and progressed to 20 agents on
a 40×40 map, with a batch size of 128. To conduct our experiments, we employed the following
FOV configurations: 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11.

2.5.2 Test Settings and Hardware Specifications

To evaluate our approach’s navigation ability and generalization, we conducted tests on maps of
sizes 40×40 and 80×80, both containing 30% obstacle vertices. Including the 80×80 map size
in the tests aimed to assess the generalization capabilities of our model and its ability to scale,
considering that our training process exclusively utilized maps of sizes smaller than or equal to40 × 40. For each pair of map size and number of agents, we randomly generated 500 scenarios,
and the number of agents in the set 4, 8, 16, 32 are tested. All test cases have a maximum list of
256 steps for each agent. All metrics were calculated as averages across the test cases. 6 Intel
Xeon Gold 6230 CPUs and 2 RTX Quadro RTX 6000 GPUs from HKUST’s HPC3 are used
during the model training.

2.6 Result

Figure 2.2: Success rate with varying FOV settings in 80 × 80 Map

16

Figure 2.3: Average steps with varying FOV settings in 80 × 80 Map

Figure 2.4: Number of communications with varying FOV settings in 80 × 80 Map

17

2.6.1 Success Rate, Average Steps and Number of Communications

We assess the performance of various FOV sizes by measuring the success rate, the average
number of steps taken, and the number of communications required. The success rate represents
the percentage of agents that reach their destination within the maximum allotted steps (256
steps). The average steps measure the mean number of steps taken to complete a MAPF task
across all agents. The number of communications indicates the total count of request-reply pairs
generated during a MAPF task.

Figures 2.2 and 2.3 depict a comparison of the success rate and average steps, respectively,
for different FOV sizes in an 80 × 80 map. On average, the 7 × 7 FOV outperforms the original
baseline (9×9) by 4.2% in terms of success rate and 3.0% in average steps. Despite receiving the
least amount of information, the 3 × 3 FOV exhibits a relatively small sacrifice in performance
across the mentioned metrics. Specifically, the 3 × 3 FOV achieves a success rate 5.85% lower
than the 7×7 FOV and 1.65% lower than the 9×9 FOV. In terms of average steps, the 3×3 FOV
demonstrates 4.2% more steps compared to the 7 × 7 FOV and 1.0% more steps compared to the9 × 9 FOV. Figure 2.4 presents the number of communications conducted during various MAPF
tasks in an 80 × 80 map. With the 3 × 3 FOV, which receives the least amount of surrounding
information, the communication requirements were reduced, resulting in a decrease in overheads
by 28.9% compared to the 9 × 9 baseline and 24.4% compared to the highest-performing 7 × 7
FOV. The 3 × 3 FOV’s ability to strike a balance between minimal communication and small
performance impacts makes it a preferable choice in scenarios where bandwidth is constrained.
This is particularly relevant when deploying numerous networked robots with limited commu-
nication devices.

The results for the 40 × 40 map are presented in Appendix A.

2.6.2 Network Step Time

In highly efficient robotic systems, large FOVs are often utilized despite the associated high
computation costs. However, many real-world multi-robot systems often encounter constraints
on computing power due to limited resources. Hence, carefully considering the computational
cost of different FOV options becomes crucial. This study employs network step time as a metric
to evaluate computation cost. Network step time measures the duration an agent requires to select
an action given an observation, and higher decision-making computation costs are indicated by
longer step times.

Figure 2.5 compares network step times across various FOV sizes. The results confirm that

18

Figure 2.5: Network step time with varying FOV settings in 80 × 80 Map

step time scales with FOV size, with the 3×3 FOV exhibiting the lowest computation cost among
the tested FOVs, while the 11 × 11 FOV demonstrates the highest. These findings hint at the
impact on computational load when using different sizes of FOV for multi-agent systems.

Table 2.2: Network step time ratio of different FOV

FOV Network Step Time Ratio3 × 3 15 × 5 1.347 × 7 1.959 × 9 2.2711 × 11 3.69

When selecting the appropriate FOV, considering computation cost alone is not enough, as it
fails to account for the impact on performance. This realization has led to the need for a metric
that considers both performance and computation cost simultaneously, which is discussed in
detail in Section 2.6.3. To further standardize the comparison of step times across different
FOVs, we normalized all the step times for a given combination of map size and number of
agents by using the shortest step time as a reference. The resulting average ratios of networked
step times for the tested FOVs are presented in Table 2.2.

19

2.6.3 Normalized Success Rate

To simultaneously consider computation cost and success rate, this study introduces a novel
metric called the normalized success rate, denoted as 𝑟′. The value of 𝑟′ is calculated by dividing
the original success rate 𝑟 by the normalized network step time ̄𝑡, expressed as follows:

𝑟′ = 𝑟 ̄𝑡 (2.6)

Figure 2.6 presents the normalized success rate for all tested FOVs across map size of 80 ×80. Our analysis considers both success rate and computation cost metrics, recognizing that
optimal performance requires satisfactory outcomes in both aspects. The results indicate that
the 3 × 3 FOV exhibits the highest level of robust performance in terms of normalized success
rate, followed by the 5 × 5, 7 × 7, 9 × 9, and 11 × 11 FOVs. The 3 × 3 FOV emerges as the most
cost-efficient option among all the FOVs examined in our study.

Figure 2.6: Normalized success rate with varying FOV settings in 80 × 80 Map

In this study, we have observed a consistent order between the network step time and nor-
malized success rate for different FOV dimensions, specifically 3 × 3, 5 × 5, 7 × 7, 9 × 9, and11×11. This finding highlights a strong correlation between the normalized success rate and the
network step time. This correlation becomes even more pronounced when the range of success
rates for different FOV sizes is relatively small (typically within 10%). At the same time, the
maximum network step time can be three times longer than the minimum. Due to the reduced
computation time associated with smaller FOV dimensions, these smaller dimensions will likely
exhibit a comparatively higher normalized success rate.

20

2.6.4 Key Findings and Recommendations

• Enlarging the FOV size does not guarantee improved performance and it can potentially
weaken performance. Conversely, smaller FOV sizes may prove to be more effective, as
the decrease in performance is not proportional to the reduction in FOV size.

• Utilizing normalized success rates enables a comprehensive performance comparison across
different FOV sizes. Conducting a thorough evaluation is crucial to identify the optimal
FOV size for each specific application, as no size applies universally.

21

CHAPTER 3

LEVERAGING 360∘ CAMERAS IN 3D
RECONSTRUCTION

3.1 Introduction
In recent years, the widespread adoption of 360∘ cameras in various industries, including con-
struction and automotive, has provided an efficient method for capturing the complete surround-
ing environment. This paper introduces a groundbreaking vision-based pipeline for 3D recon-
struction that leverages the capabilities of single 360∘ cameras while tackling the challenges
associated with their usage. The decision to employ a vision-based approach instead of relying
on inertial measurement units (IMU) or depth sensors like LiDAR is based on the accessibil-
ity and ease of use of video data alone, as opposed to requiring dedicated hardware setups and
specialized software.

3D reconstruction plays a vital role in various fields, including robotics [7], Augmented Re-
ality (AR) [5, 6], Building Information Modelling (BIM) [8, 9], and autonomous navigation [10,
11]. However, conventional 3D reconstruction methods often involve complex setups with mul-
tiple cameras or specialized hardware [12]. The emergence of consumer-grade 360∘ cameras has
revolutionized the field by offering an affordable and user-friendly alternative. These cameras
have gained significant popularity due to their ease of use, affordability, and ability to capture
the entire surrounding environment in a single shot. As a result, they have become an ideal
choice for a wide range of applications, democratizing access to 3D reconstruction technology
and enabling its deployment in various industries and domains.

In order to address the calibration difficulties associated with 360∘ cameras, we propose a
practical solution that eliminates the requirement for large checkerboard patterns. Furthermore,
we introduce a technique to transform the distorted Equirectangular Projection (ERP), a com-
monly used image representation for 360∘ cameras, into four perspective views resembling cube
maps. This conversion enables compatibility with deep learning models trained on undistorted
perspective images, thereby expanding the potential applications of consumer-grade 360∘ cam-
eras in the field of 3D reconstruction. By overcoming calibration challenges and providing a

22

standardized image representation, our approach offers a more accessible and efficient method
for utilizing these cameras in various 3D reconstruction tasks.

Our approach to 3D reconstruction relies on Visual Simultaneous Localization and Mapping
(VSLAM) techniques, which have gained prominence in the field. VSLAM enables real-time
3D mapping and camera pose tracking by leveraging the camera’s visual input, making it well-
suited for our research. Unlike traditional SLAM systems that depend on external infrastructure,
our vision-based approach operates in a self-contained manner, relying solely on the camera’s
visual information. This simplicity and flexibility make it highly suitable for different scenarios.
By combining the camera’s pose estimation obtained from VSLAM with the cube map views,
we can accurately determine the camera’s position and orientation. This information is critical
in generating detailed 3D mesh representations of indoor environments. Leveraging a recent 3D
reconstruction method [38], our framework facilitates the creation of realistic 3D meshes based
on the extracted camera poses and corresponding images from 360∘ cameras.

Figure 3.1: Visualizing the front, right, back, and left views after converting ERP into perspec-
tive images [2].

In order to assess the effectiveness of our approach, we conducted an experimental study to
compare the performance of 360∘ cameras with traditional perspective cameras. By capturing
videos of an indoor environment while walking a complete circle, we evaluated their ability to
capture the scene’s geometry. Furthermore, we compared the generated 3D meshes from each
camera type with ground truth data obtained through a LiDAR scanner. This comparative anal-
ysis provides valuable insights into the accuracy and performance of our vision-based approach.

23

Figure 3.2: Overview of the processing pipeline in converting an ERP into perspective images
and corresponding poses. An ERP is shown in the top left corner with a cube map projection
overlaid on top, and the converted perspective images are shown in the bottom left. On the right
side, the pose visualization graph illustrates the changes in the location and rotation of the poses
for every 50 frames. Each color represents a particular view and its pose: yellow for the front,
red for the right, blue for the back, and green for the left [2].

Our proposed vision-based approach, utilizing a single 360∘ camera, aims to provide a sim-
plified and accessible solution for 3D reconstruction. By harnessing the advancements in con-
sumer technology and capitalizing on the unique advantages of 360∘ cameras, we unlock their
potential for achieving accessible 3D reconstructions. This breakthrough opens up new pos-
sibilities for various consumer-oriented applications across multiple fields, paving the way for
exciting advancements in robotics, surveillance, and augmented reality.

3.2 Related Works

3.2.1 3D Reconstruction

Reconstructing a 3D model typically involves acquiring depth information from a sequence of
images and integrating these depth maps. Traditional methods often rely on specialized hard-
ware, such as LiDAR scanners or stereo cameras, to capture the environment’s geometry. How-
ever, with recent advancements in consumer-grade cameras and computer vision techniques,
more accessible and cost-effective approaches have emerged. These advancements have paved
the way for new possibilities in 3D reconstruction, making it more attainable and affordable for
a wider range of applications and users.

Structure from Motion (SfM) [39–41] and Multi-View Stereo (MVS) [42] are two commonly

24

used techniques for 3D reconstruction. SfM primarily relies on feature detection and matching
algorithms to predict camera poses and reconstruct the 3D geometry of a scene. On the other
hand, MVS focuses on reconstructing the 3D geometry from calibrated input images. In re-
cent years, deep learning-based methods have emerged as a promising alternative for 3D recon-
struction. These approaches have shown significant potential by utilizing Convolutional Neural
Network (CNN) to learn feature representations from input images and estimate the scene’s 3D
geometry, especially in scenarios with limited data or challenging lighting conditions. Further
advancements in deep learning have propelled the field of 3D reconstruction, enabling models
to learn powerful feature representations directly from data [43–45] and improved the accuracy
and effectiveness of 3D reconstruction processes.

Recent methods, such as Atlas [38], NeuralRecon [46], and CDRNet [47], employ neural
networks to directly regress a truncated signed distance function (TSDF) volume for generating
3D models. Atlas, for instance, leverages extracted 3D features and feeds them to semantic
heads for scene labeling. Labeling or semantics can enhance the quality of 3D reconstruction
by incorporating knowledge about objects, textures, and scenes, thereby providing useful priors
and constraints to generate more accurate models for applications like robotic navigation.

When working with fisheye or 360∘ cameras, the primary approach is to leverage the wide
FOV of the camera to capture the environment from various viewpoints. One common approach
involves using multiple cameras to capture the environment from different viewpoints and then
merging the resulting images to create a consistent 3D model. However, this approach can be
costly as it requires more hardware. Previous works, such as [48], have developed fisheye stereo
matching algorithms. Another strategy involves employing a single 360∘ camera and leveraging
its wide FOV to capture the environment from various viewpoints. This approach has been ex-
plored in several studies, with various techniques proposed to address the challenges associated
with using 360∘ cameras for 3D reconstruction, including calibration and distortion correction.
More recently, deep learning techniques have been employed for monocular depth estimation in
the context of 360∘ cameras [49, 50]. These deep learning methods and 360∘ cameras have be-
come a crucial foundation for current and future 3D reconstruction development. In particular,
existing methods like MVSNet [44] have been adapted and applied to this domain, as seen in the
case of 360MVSNet [51]. These advancements in leveraging deep learning have shown great
potential in enhancing the accuracy and effectiveness of 3D reconstruction processes.

Overall, 3D reconstruction is a vibrant and active research area, with numerous approaches
and techniques being explored. Using consumer-grade 360∘ cameras and deep learning-based
methods has opened up new possibilities for more accessible and cost-effective 3D reconstruc-

25

tion. These advancements pave the way for exciting developments in augmented reality, virtual
reality, and computer vision.

3.2.2 Visual-based Pose Estimation

VSLAM techniques, exemplified by [52–54], utilize image data to generate 3D representations
of the environment and estimate camera poses. While these techniques can accommodate var-
ious camera configurations, such as monocular and stereo setups, they encounter difficulties in
dynamic environments, especially when using monocular setups. By employing sensor fusion
techniques, such as integrating IMU [55] and LiDAR sensors [56], algorithms can operate ef-
fectively in environments with limited visual information. However, setting up and calibrating
these sensor fusion systems can be complex and challenging. As an alternative approach, widen-
ing the FOV of sensors can provide additional input data, which can enhance the algorithms’
performance and accuracy.

Cameras with a wide FOV, such as fisheye and 360∘ cameras, can capture extensive environ-
mental visual information, leading to more accurate pose estimation. Approaches like [57, 58]
have successfully extended existing techniques [53, 59] to work effectively with 360∘ cameras.
Notably, OpenVSLAM [3], which utilizes Oriented FAST and Rotated BRIEF (ORB), employs
spatial feature matching for pose estimation with 360∘ cameras. It is also the first open-source
VSLAM algorithm that supports equirectangular imagery. As 360∘ cameras and their supporting
algorithms continue to develop, utilizing them has become a cost-efficient alternative to tradi-
tional perspective cameras, offering great potential for improved 3D reconstruction and pose
estimation.

3.3 Proposed Framework

3.3.1 ERP Conversion

Established deep learning models, designed primarily for undistorted perspective images, are
not well-suited for handling 360∘ images due to the inherent distortions they possess. Addi-
tionally, calibrating 360∘ cameras presents challenges and complexities, especially when using
large checkerboard patterns. To overcome these obstacles, we propose a straightforward solu-
tion. Our approach involves converting ERP into four perspectives: front, back, left, and right.
During the conversion process, the pixels from the surface of the 360∘ sphere are mapped onto a
tangent plane, resulting in a more easily manageable perspective representation for subsequent

26

processing. These transformed views resemble cube maps and can be treated as outputs from
four virtual cameras positioned in different directions.

We first establish a coordinate system for reference. A unit sphere is centered at the origin,
and the image size of the output perspective image is denoted as (𝐻, 𝑊). The viewing angles,
both horizontal and vertical, originate from the sphere’s center (Figure 3.3) and are defined
to determine the size of a region of interest (ROI) on the sphere’s surface. With the above
information, we could find 𝐻 ∗ 𝑊 3D coordinates of the ERP pixels on the ROI.

Figure 3.3: Overview of the ERP conversion process.

Next, to select a specific section on the sphere, we introduce an offset angle 𝛼 for both hori-
zontal and vertical directions. Each of the 3D coordinates of the ERP pixels can be considered
a vector originating from the center of the sphere. Rodrigues’ rotation formula (Formula 3.2) is
applied to rotate these vectors along the horizontal and vertical axes based on the corresponding
offset angles 𝛼.

The Rodrigues’ rotation formula can be presented as

𝑣𝑟 = 𝑣 + sin 𝛼(𝑘 × 𝑣) + (1 − cos 𝛼)𝑘 × (𝑘 × 𝑣) (3.1)

, where 𝑣 represents the vector to be rotated, 𝑣𝑟 is the resulting rotated vector, and 𝑘 denotes the
unit vector of the rotation axis. The formula can also be expressed in matrix form

𝑅 = 𝐼 + (sin 𝛼)𝐾 + (1 − cos 𝛼)𝐾2 (3.2)

, where 𝐼 is the identity matrix, and 𝑅 is the rotation matrix. Additionally, we have

𝑣𝑟 = 𝑅𝑣 (3.3)

27

, and the unit vector 𝑘 can be represented as

𝐾 = ⎡⎢⎢⎢⎣
0, −𝑘𝑧, 𝑘𝑦𝑘𝑧, 0, −𝑘𝑥−𝑘𝑦, 𝑘𝑥, 0

⎤⎥⎥⎥⎦
. (3.4)

Here, 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 represent the unit vector 𝑘’s components. While any unit vector can be used in
principle, the ERP conversion pipeline only considers the unit vector along the y and z axes.

Following the rotation, the 3D coordinates of the ERP pixels are converted into latitude and
longitude values using the following equations, with 𝑟 representing the sphere’s radius (assumed
to be 1 in our case).

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = sin−1 𝑧𝑟 (3.5)

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = tan 𝑦𝑥 (3.6)

Finally, the pixel coordinates on the ERP image are calculated using the obtained latitude
and longitude values.

𝑥𝐸𝑅𝑃 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒180 ⋅ 𝑥𝐸𝑃 𝑅𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑥𝐸𝑃 𝑅𝑐𝑒𝑛𝑡𝑒𝑟 (3.7)

𝑦𝐸𝑅𝑃 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒90 ⋅ 𝑦𝐸𝑃 𝑅𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑦𝐸𝑃 𝑅𝑐𝑒𝑛𝑡𝑒𝑟 (3.8)

(𝑥𝐸𝑃 𝑅𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝐸𝑃 𝑅𝑐𝑒𝑛𝑡𝑒𝑟) are defined as the center coordinates of the ERP. At the end we would
collect 𝐻 ∗ 𝑊 set of (𝑥𝐸𝑅𝑃 , 𝑦𝐸𝑅𝑃) pixel coordinate pairs. These coordinate values are then
interpolated to integers before extracting the corresponding ERP pixel value and mapping it
back to the perspective image.

In our experiment, we fixed both horizontal and vertical viewing angles that define the ROI
on the sphere as 90∘. The horizontal 𝛼 is defined as { 0∘, 90∘, 180∘, 270∘ } for the four views.
The top and bottom views are excluded due to their high distortion and limitations inherent in
the stitching process; thus, the vertical 𝛼 is kept at 0∘.

28

Figure 3.4: Overview of OpenVSLAM [3]

3.3.2 Pose Estimation

To determine the camera pose of ERP, we employ a VSLAM approach that depends exclusively
on image input. In this study, we propose using OpenVSLAM, an ORB feature extractor-based
VSLAM algorithm designed to be compatible with 360∘ cameras. The algorithm comprises
three essential modules: tracking, mapping, and global optimization.

The tracking module estimates the camera pose for each frame by extracting features us-
ing the ORB feature extractor. It also determines if a frame qualifies as a keyframe for fur-
ther processing. The keyframes are then passed to the mapping module, which utilizes them to
triangulate 3D points, generating a comprehensive map of the environment’s geometry. This
reconstruction of spatial information is enabled by determining the 3D locations of landmarks
from the 360° imagery. Finally, the global optimization module refines and optimizes the overall
map through loop detection and global bundle adjustment. This ensures accurate and consistent
camera poses and 3D points by minimizing errors across observations of scene elements from
different viewpoints.

3.3.3 Pose Extraction of Cube Map Views

To calculate the poses of the four perspective views derived from ERP, we utilized the pose
estimated by OpenVSLAM and applied a rigid body rotation for the corresponding views. This
rotation incorporated four distinct rotation matrix sets mapping to each perspective view. As
shown in Figure 3.2, the poses of the front, right, back, and left views are represented with
yellow, red, blue, and green markers on the pose visualization graph.

29

The rigid body rotation is done by applying the 3×3 rotation matrix

𝑅 = ⎡⎢⎢⎢⎣
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 00 0 1

⎤⎥⎥⎥⎦
to the rotation component 𝑅̄ of a pose matrix 𝑃 . The right, back, and left views are created
through rotation 𝜃 of 90∘, 180∘, and 270∘ along the z-axis.

The pose matrix 𝑃 , which represents a linear transformation from the origin and orientation
of the current position, contains a 3x3 rotation matrix component 𝑅̄ and a translation vector
component 𝑡. The pose matrix is defined as:

𝑃 =
⎡⎢⎢⎢⎢⎢⎣

𝑟11 𝑟12 𝑟13 𝑡𝑥𝑟21 𝑟22 𝑟23 𝑡𝑦𝑟31 𝑟32 𝑟33 𝑡𝑧0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎣

𝑅̄ 𝑡0 1⎤⎥⎥⎦ ⋅

Finally, the pose is updated as follows:

𝑅̄′ = ⎡⎢⎢⎢⎣
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 00 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑟11 𝑟12 𝑟13𝑟21 𝑟22 𝑟23𝑟31 𝑟32 𝑟33

⎤⎥⎥⎥⎦
𝑃 ′ = ⎡⎢⎢⎣

𝑅′ 𝑡0 1⎤⎥⎥⎦
3.3.4 3D Mesh Generation

By leveraging the perspective images obtained through ERP conversion, we can combine the
extracted poses with their corresponding images. These combined posed images are then fed into
our 3D reconstruction pipeline. To cater to applications such as BIM and VR solely on visual
perception, we need a 3D reconstruction system that does not require depth inputs. To meet
this requirement, we adopted Atlas [38], an end-to-end 3D reconstruction model that directly
predicts TSDF from posed images or input RGB image sequences. In Atlas, the 2D CNN layers
are first utilized to extract features from each image. Using the camera intrinsics and extrinsics,
these 2D features are projected back and consolidated into a voxel volume. Subsequently, a 3D

30

CNN is employed to refine the aggregated voxel volume, predicting TSDF values and generating
the final 3D model.

3.4 Experiment and Evaluation
To assess the effectiveness of utilizing 360∘ cameras, we conducted a series of experimental
studies that involved comparing the performance of a 360∘ camera and a perspective camera, as
well as evaluating the quality of the 3D mesh generated from the 360∘ camera under different
conditions. For this experiment, we captured videos of an indoor environment using both camera
types. The test environment was a conference room in our laboratory at HKUST, where a camera
operator walked in a complete circle while the camera recorded the scene. We selected the
popular Ricoh THETA V as our 360∘ camera and the iPhone 13 (with an FOV of approximately
72∘) as our perspective camera. Each camera captured five videos, and we chose the videos that
produced the best 3D meshes for the final comparison. The selected video from the 360∘ camera
consisted of 484 ERP, while the perspective camera video contained 986 image frames.

3.4.1 Comparison between 360° Camera and Perspective Camera

Figure 3.5: Qualitative 3D reconstruction results. (a) Ground truth LiDAR point cloud vs 3D
model (without semantics) generated by 360∘ camera’s data (b) 3D model (with semantics) gen-
erated by perspective camera’s data vs 3D model (with semantics) generated by 360∘ camera’s
data [2].

In the initial experiment, we aimed to compare the 3D reconstruction performance between a
360∘ camera and a conventional perspective camera to determine which device produces higher-
quality results. To achieve this, we first converted the captured panoramic videos from the 360∘
camera into perspective images. We then extracted the camera poses from the converted perspec-
tive images using OpenVSLAM (in equirectangular mode) and rigid body rotation. Similarly,
we converted the captured video into image sequences for the perspective camera and extracted
the camera poses using OpenVSLAM (in perspective mode). Both camera types’ camera poses

31

and image sequences are combined as posed images. Subsequently, we employed the Atlas
model to generate 3D meshes of the indoor environment based on the extracted camera poses
and the corresponding images for both camera types.

To accurately assess the precision of the generated 3D models, we acquired ground truth
data of the test environment using a LiDAR scanner. These ground truth data were presented
as point clouds in Figure 3.5a. To evaluate the performances and compare the accuracy of the
3D meshes generated by each camera type, we calculated the F-score, representing the predic-
tive performance by combining precision and recall. This is done by comparing the output 3D
meshes against the ground truth data.

As depicted in Figure 3.6, the 3D mesh generated from the 360∘ camera exhibits better per-
formance than that of the perspective camera, as indicated by its higher peak F-score of 0.297.
This superiority can be attributed primarily to the panoramic image view provided by ERP. A
qualitative comparison is presented in Figure 3.5. In our processing pipeline for the 360∘ cam-
era, a single ERP image is converted into four perspective images. Therefore, given an equal
number of raw images, the processing pipeline can provide four times the data compared to the
perspective camera. This enhanced data collection efficiency of 360∘ cameras enables practical,
real-world applications, as operators (human or robot) can reduce the time required to capture
the scene and reconstruct an environment.

3.4.2 Quantifying Data Requirements for 3D Reconstruction using 360°
Camera

In addition to assessing the optimal performance of the 360∘ camera in 3D reconstruction, we
investigated the model’s performance with varying amounts of data. To accomplish this, we
systematically varied the quantity of data used for 3D reconstruction through random selection.
Subsequently, we examined the minimum data required to achieve near-optimal performance,
defined as an optimal F-score within a range of ±5%, for 3D reconstruction in each area. The
results in Figure 3.6 indicate that approximately 400 perspective images or 100 raw ERP frames
from the 360∘ camera are necessary to generate a near-optimal 3D mesh in our test environment.
More specifically, in our experiment, using a 360° camera, capturing an average of 3.34 ERP
frames per square meter provides sufficient image data for achieving near-optimal 3D reconstruc-
tion quality. This conclusion is based on our test environment size of 4.4𝑚 × 6.8𝑚 = 29.92𝑚2.

32

3.4.3 Impact of Camera Man Removal on 3D Mesh Quality

This experiment analyzes how removing the camera operator from 360° camera images affects
3D model quality. We implemented a simple approach where the camera operator’s position was
fixed on every 𝑖-th image on each horizontal cube map face, and every 𝑖-th image was filtered out
from processing. Our results indicate that removing the camera operator can improve the quality
of 3D models in certain scenarios. Specifically, we observed that the filtered version performed
better with limited data as interference from the camera operator was eliminated. However,
as more data became available, the non-filtered 3D mesh performed better, presumably due to
information loss in the filtered version. The results are shown in Figure 3.6.

Overall, this experiment offers useful insights into using 360° cameras for 3D reconstruction.
The results highlight how 3D reconstruction quality is impacted as the available frame count
varies. Additionally, we demonstrate how factors like the presence of the camera operator affect
the final 3D mesh. These findings can help inform best practices for deploying 360° cameras
in applications requiring robust 3D modeling with limited image sets or for scenarios where
equipment obstructs the view.

Figure 3.6: Comparing F-score between perspective camera, 360∘ camera, and 360∘ camera with
camera man filtered. The F-score is evaluated for varying numbers of frames. [2].

33

3.5 Discussion
The outcomes of our study showcase the potential of utilizing 360∘ cameras to achieve high-
quality 3D reconstructions, opening up new prospects for diverse applications across various
domains. However, despite the promising results, certain limitations are still associated with our
approach. Firstly, our method relies on converting ERP into cube maps, which could introduce
artifacts and inaccuracies in the model inputs. Future investigations could explore alternative
representations or develop models capable of directly handling ERP. Secondly, our approach
is currently confined to indoor environments, and its outdoor or dynamic scenes performance
requires further exploration. Lastly, our method does not explicitly address occlusions or reflec-
tions, which could impact the quality of the 3D reconstruction.

34

CHAPTER 4

DATA COLLECTION TOOL FOR 360° CAMERAS

4.1 Introduction
Our previous work explored monocular vision-based approaches for 3D reconstruction and pose
estimation using 360° cameras. While such techniques can provide reasonable results, integrat-
ing additional sensor measurements, such as inertial measurements, can help improve accuracy.
IMU sensors are commonly available on mobile devices and can enhance pose estimation ro-
bustness when combined with video frames through sensor fusion. Therefore, we wish to build
a data collection tool for researchers to utilize the raw data on 360° cameras and explore its full
potential.

Existing tools for collecting synchronized sensor data from mobile devices for visual-inertial
research include Grafika [60], Mobile AR Sensor (MARS) Sensor Logger [61], and VideoIMU-
Capture [62]. Grafika is an SDK app developed by Google to exercise graphics and video
capabilities, but it is not intended for stable data collection purposes. MARS Logger is built
upon Grafika to record camera frames and IMU measurements from Android and iOS devices.
Specifically, the camera frames from the MARS Logger are saved into H.264/MP4 videos using
the OpenGL ES, Camera2 API, and MediaCodec. Furthermore, VideoIMUCapture extends the
capability of MARS Logger by processing the frame metadata and IMU data in a Protobuf3 for-
mat for better efficiency. This provides researchers with temporally aligned visual and inertial
recordings for tasks such as SLAM and 3D reconstruction. However, neither MARS Logger nor
VideoIMUCapture supports 360° cameras, which are of strong interest for large-scale modeling
and navigation applications. Our work aims to address this gap by developing a new data col-
lection tool based on VideoIMUCapture, which has been modified to be compatible with 360°
cameras. This will enable researchers to leverage the full sensory capabilities of 360° cameras
coupled with IMU data through a stable, synchronized recording solution.

Additionally, combining stored video frames and IMU data enables sensor fusion-based pose
estimation like visual-inertial odometry. This section describes the details of the implementation
of retrieving and interpolating IMU data from the Android APIs. Experimental results demon-
strate recording synchronized videos and IMU recordings from a Ricoh Theta 360° camera onto

35

a laptop. The collected data can be valuable for researchers working with 360° camera-based
SLAM, 3D reconstruction, and other related tasks. All the codes are open-sourced and shared
in [https://github.com/HKUST-ECE-IC-Design-Center-OWL/Theta-IMU]

4.2 Obtaining Video and IMU Data from 360° camera

Figure 4.1: System diagram of Theta-IMU

The system for collecting synchronized video and IMU data from a 360° camera is shown in Figure

4.1. The Ricoh Theta V 360° camera, which natively runs the Android operating system, is used in our

experiment. To support the Ricoh Theta V camera, we integrate the Ricoh Theta Plug-in Library [63]

with our custom data collection application. We then install our plug-in application, Theta-IMU, on the

360° camera to retrieve raw sensor data. The application retrieves IMU measurements from the Android

SensorManager at the highest available rate, typically around 100Hz. Since the sensors have different

sampling rates and timestamps, the raw data is not perfectly synchronized between the three sensors. To

address this, we apply a two-stage interpolation to synchronize the measurements. We first interpolate

the accelerometer data and then the magnetometer data based on the gyroscope samples. This results in

IMU readings from all three sensors having matched timestamps. This preprocessing enables further data

fusion with the retrieved 360° video frames.

In addition to IMU data, our application captures video frames from the camera. However, Theta

V only supports the older Camera API rather than the Camera2 API, so it does not provide reliable

timestamps for each individual video frame. Support for Theta V was established using the Theta Plug-in

Library, which allows us to handle callbacks for various camera operations. On the laptop, our collection

application receives the data streams and saves the measurements to files with the data structure defined

in Appendix B. This process allows reliably capturing and storing raw 360° visual and inertial recordings

for various sensor fusion applications.

36

https://github.com/HKUST-ECE-IC-Design-Center-OWL/Theta-IMU

4.3 Experiment
Video and IMU data are generated only when the Theta V runs our Theta-IMU plug-in app. The Theta-

IMU plug-in app can be activated through the plug-in management feature in the official Ricoh Theta

desktop app or by directly launching the app via an emulator such as Vysor. However, it is important to

note that normal USB transfer is not feasible for acquiring the data due to access restrictions imposed by

the manufacturer. To circumvent this limitation and retrieve the data from the app, we rely on an additional

plug-in app [4], as described in Figure 4.2, which facilitates wireless data transfer.

Figure 4.2: (a) Theta-IMU data snapshot (b) Data transfer panel on a computer [4]

While direct retrieval of synchronized video and IMU data through our app is not possible due to the

absence of Camera2 API support, we have devised an alternative approach to address this limitation. By

utilizing the OpenCV library [64], we extract the relative timestamps {𝑡1, 𝑡2, ..., 𝑡𝑛} for each video frame

given the length of frames as 𝑛. Subsequently, we determine the initial timestamp 𝑡𝑠 by analyzing the

IMU data graph. To establish synchronization, we apply an offset to the video frame timestamps using

the starting timestamps derived from the IMU data, i.e., {𝑡1 + 𝑡𝑠, 𝑡2 + 𝑡𝑠, ..., 𝑡𝑛 + 𝑡𝑠}
Figure 4.3 depicts the ERPs captured during the data collection. The ERP can be converted into

perspective images to facilitate further processing using the methodology outlined in Section 3.3.1. Ad-

ditionally, Figure 4.4 illustrates the collected IMU sensor data, which undergoes interpolation based on

gyroscope samples. It is important to note that the IMU data guarantees a consistent starting timestamp,

as samples collected when not all sensors are ready are discarded.

37

Figure 4.3: Examples of captured ERP. (a) is captured when the 360° camera is mounted on a
robot. (b) is captured when the 360° camera is handheld

Figure 4.4: Captured accelerometer, gyroscope, and magnetometer data along z-axis

38

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion
This thesis explored key challenges in multi-agent 3D reconstruction of indoor environments and pro-

posed novel solutions encompassing MAPF optimization, improved 360° camera-based 3D reconstruc-

tion techniques, and data processing. A decentralized RL framework is proposed to address commu-

nication overhead in the MAPF problem. It highlights the potential for computational cost reduction

without compromising performance, offering valuable insights into designing efficient multi-agent sys-

tems. Additionally, a pipeline was introduced for accurate and data-efficient 3D reconstruction using 360°

camera, leveraging its panoramic view to facilitate more efficient data collection and scene reconstruc-

tion. Integrating ERP conversion and VSLAM techniques establishes a vision-based approach for 3D

reconstruction. Finally, a data collection tool is developed to acquire synchronized data from 360° cam-

eras, enabling the construction of comprehensive training datasets. The resulting framework empowers

scalable 3D reconstruction applications employing autonomous robot fleets across diverse domains. The

future works are presented as follows.

5.2 Future Works

5.2.1 Communication-based MAPF
Building upon the foundation of this work on communication-based MAPF, several exciting avenues

exist for future exploration. While the current work focuses on a simplified grid environment for initial

validation, the next step is to evaluate the performance and scalability in more realistic settings. This

involves utilizing established simulation platforms like Gazebo or Isaac Sim, which offer high-fidelity

physics engines and comprehensive environment modeling capabilities. The evaluation will move beyond

the simplified environment to assess performance in complex scenarios featuring dynamic obstacles and

variable agent densities. Simultaneously, we will rigorously examine the algorithm’s ability to navigate

these situations safely, prioritizing collision avoidance and strict adherence to established safety protocols.

In addition, this work focuses on homogeneous agents with identical capabilities and communica-

tion protocols. Future development should encompass heterogeneous agents with diverse communica-

39

tion, sensing, and movement capabilities. This necessitates the development of adaptable communication

strategies and potentially hierarchical decision-making structures for coordination.

5.2.2 3D Reconstruction with 360° Cameras
The proposed 3D reconstruction pipeline utilizing 360° cameras presents a promising approach for various

applications. Building on the pipeline, we can explore exciting avenues to unlock its full potential. For

instance, while the current work only utilizes 360° visual information, real-world scenarios demand a

richer data pool to achieve optimal results with higher accuracy and usability of the reconstructed 3D

models in domains such as construction. Potential data sources include LiDAR, which provides precise

depth information. By fusing data from multiple sources, the reconstructed 3D models will be more

robust to noise and occlusions, leading to a more complete representation of the real world.

In our current work, we only employ a specific 3D reconstruction algorithm. Future research can

explore the potential of incorporating more advanced algorithms. Some promising candidates include

Neural Radiance Fields (NeRF), 3D Gaussian Splatting, and 3D-aware diffusion models. By investigat-

ing and integrating these advanced algorithms, the 3D reconstruction pipeline can achieve even greater

accuracy and detail in the reconstructed models.

Lastly, our current work only focuses on offline reconstruction of 3D scenes. However, achieving real-

time reconstruction would offer more advantages. To enable this capability, future research will explore

real-time reconstruction techniques, such as NeuralRecon and CDRNet. This shift towards real-time

reconstruction would open doors to a wider range of applications. For example, augmented reality could

seamlessly overlay virtual objects with semantic labeling onto the real world, and robots equipped with

360° cameras could leverage real-time reconstruction for building dynamic maps during autonomous

navigation, facilitating safe and efficient movement. By achieving real-time reconstruction, the 360°

camera-based pipeline can unlock a whole new realm of possibilities in various interactive and dynamic

applications.

40

REFERENCES

[1] H. C. Cheng, L. Shi, and C. P. Yue, “Optimizing field-of-view for multi-agent path finding
via reinforcement learning: A performance and communication overhead study,” in 2023
62nd IEEE Conference on Decision and Control (CDC), 2023, pp. 2141–2146 (cit. on
pp. viii, 12).

[2] H. C. Cheng, B. Hussain, Z. Hong, and C. P. Yue, “Leveraging 360° camera in 3d re-
construction: A vision-based approach,” in International Journal of Signal Processing
Systems, vol. 12, 2024, pp. 1–6 (cit. on pp. viii, 23, 24, 31, 33).

[3] S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: A versatile visual slam frame-
work,” in Proceedings of the 27th ACM International Conference on Multimedia, 2019,
pp. 2292–2295 (cit. on pp. viii, 26, 29).

[4] K. Oerlemans, Authydra, https://github.com/ricohapi/theta-plugins/

tree/main/plugins/com.kasper.authydra (cit. on pp. viii, 37).

[5] F. Gherardini, M. Santachiara, and F. Leali, “3d virtual reconstruction and augmented
reality visualization of damaged stone sculptures,” in IOP Conference Series: Materials
Science and Engineering, IOP Publishing, vol. 364, 2018, p. 012 018 (cit. on pp. 1, 22).

[6] S. González Izard, R. Sánchez Torres, O. Alonso Plaza, J. A. Juanes Mendez, and F. J.
García-Peñalvo, “Nextmed: Automatic imaging segmentation, 3d reconstruction, and 3d
model visualization platform using augmented and virtual reality,” Sensors, vol. 20, no. 10,
p. 2962, 2020 (cit. on pp. 1, 22).

[7] Y. Tao, M. Popović, Y. Wang, S. T. Digumarti, N. Chebrolu, and M. Fallon, “3d li-
dar reconstruction with probabilistic depth completion for robotic navigation,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE,
2022, pp. 5339–5346 (cit. on pp. 1, 22).

[8] B. Wang, Q. Wang, J. C. Cheng, C. Song, and C. Yin, “Vision-assisted bim reconstruc-
tion from 3d lidar point clouds for mep scenes,” Automation in Construction, vol. 133,
p. 103 997, 2022 (cit. on pp. 1, 22).

41

https://github.com/ricohapi/theta-plugins/tree/main/plugins/com.kasper.authydra
https://github.com/ricohapi/theta-plugins/tree/main/plugins/com.kasper.authydra

[9] J. Mahmud, T. Price, A. Bapat, and J.-M. Frahm, “Boundary-aware 3d building recon-
struction from a single overhead image,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 441–451 (cit. on pp. 1, 22).

[10] Y. Huang, W. Zheng, Y. Zhang, J. Zhou, and J. Lu, “Tri-perspective view for vision-
based 3d semantic occupancy prediction,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 9223–9232 (cit. on pp. 1, 22).

[11] X. Yan et al., “Sparse single sweep lidar point cloud segmentation via learning contextual
shape priors from scene completion,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, 2021, pp. 3101–3109 (cit. on pp. 1, 22).

[12] R. Ren, H. Fu, H. Xue, Z. Sun, K. Ding, and P. Wang, “Towards a fully automated 3d
reconstruction system based on lidar and gnss in challenging scenarios,” Remote Sensing,
vol. 13, no. 10, p. 1981, 2021 (cit. on pp. 2, 22).

[13] R. Stern et al., “Multi-agent pathfinding: Definitions, variants, and benchmarks,” in Pro-
ceedings of the International Symposium on Combinatorial Search, vol. 10, 2019, pp. 151–
158 (cit. on pp. 7, 10, 11).

[14] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal
multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015 (cit. on pp. 7,
9).

[15] V. Rybár and P. Surynek, “Highways in warehouse multi-agent path finding: A case
study.,” in ICAART (1), 2022, pp. 274–281 (cit. on pp. 7, 9).

[16] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Efficient sat approach to multi-agent
path finding under the sum of costs objective,” in Proceedings of the twenty-second eu-
ropean conference on artificial intelligence, 2016, pp. 810–818 (cit. on p. 7).

[17] G. Sartoretti et al., “Primal: Pathfinding via reinforcement and imitation multi-agent learn-
ing,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2378–2385, 2019 (cit. on
pp. 7, 10, 11).

[18] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti, “Primal _2: Pathfinding via reinforce-
ment and imitation multi-agent learning-lifelong,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 2, pp. 2666–2673, 2021 (cit. on p. 7).

42

[19] Z. Liu, B. Chen, H. Zhou, G. Koushik, M. Hebert, and D. Zhao, “Mapper: Multi-agent
path planning with evolutionary reinforcement learning in mixed dynamic environments,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2020, pp. 11 748–11 754 (cit. on pp. 7, 10, 12).

[20] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized
multi-robot path planning,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2020, pp. 11 785–11 792 (cit. on pp. 7, 10).

[21] Z. Ma, Y. Luo, and H. Ma, “Distributed heuristic multi-agent path finding with commu-
nication,” in 2021 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2021, pp. 8699–8705 (cit. on pp. 7, 10–13).

[22] Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-aware graph attention networks for large-
scale multi-robot path planning,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 5533–5540, 2021 (cit. on p. 7).

[23] Z. Ding, T. Huang, and Z. Lu, “Learning individually inferred communication for multi-
agent cooperation,” Advances in Neural Information Processing Systems, vol. 33, pp. 22 069–
22 079, 2020 (cit. on pp. 7, 12).

[24] A. Das et al., “Tarmac: Targeted multi-agent communication,” in International Confer-
ence on Machine Learning, PMLR, 2019, pp. 1538–1546 (cit. on pp. 7, 10).

[25] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to communicate with
deep multi-agent reinforcement learning,” Advances in neural information processing sys-
tems, vol. 29, 2016 (cit. on p. 7).

[26] S. Q. Zhang, Q. Zhang, and J. Lin, “Efficient communication in multi-agent reinforcement
learning via variance based control,” Advances in Neural Information Processing Systems,
vol. 32, 2019 (cit. on p. 7).

[27] Z. Ma, Y. Luo, and J. Pan, “Learning selective communication for multi-agent path find-
ing,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1455–1462, 2021 (cit. on
pp. 7, 10–12).

[28] S. LaValle, “Planning algorithms,” Cambridge University Press google schola, vol. 2,
pp. 3671–3678, 2006 (cit. on p. 9).

[29] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision avoid-
ance,” in Robotics Research: The 14th International Symposium ISRR, Springer, 2011,
pp. 3–19 (cit. on p. 9).

43

[30] G. Sanchez and J.-C. Latombe, “Using a prm planner to compare centralized and decou-
pled planning for multi-robot systems,” in Proceedings 2002 IEEE international confer-
ence on robotics and automation (Cat. No. 02CH37292), IEEE, vol. 2, 2002, pp. 2112–
2119 (cit. on p. 9).

[31] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem,” in Proceedings of the Inter-
national Symposium on Combinatorial Search, vol. 5, 2014, pp. 19–27 (cit. on p. 9).

[32] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic, decision-making
agents with deep reinforcement learning,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 3052–3059 (cit. on p. 10).

[33] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with
deep reinforcement learning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2017, pp. 1343–1350 (cit. on p. 10).

[34] C. Ferner, G. Wagner, and H. Choset, “Odrm* optimal multirobot path planning in low
dimensional search spaces,” in 2013 IEEE international conference on robotics and au-
tomation, IEEE, 2013, pp. 3854–3859 (cit. on p. 10).

[35] B. Riviere, W. Hönig, Y. Yue, and S.-J. Chung, “Glas: Global-to-local safe autonomy
synthesis for multi-robot motion planning with end-to-end learning,” IEEE robotics and
automation letters, vol. 5, no. 3, pp. 4249–4256, 2020 (cit. on p. 10).

[36] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian, “Trajectory planning
for quadrotor swarms,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 856–869, 2018
(cit. on p. 10).

[37] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network
architectures for deep reinforcement learning,” in International conference on machine
learning, PMLR, 2016, pp. 1995–2003 (cit. on p. 13).

[38] Z. Murez, T. Van As, J. Bartolozzi, A. Sinha, V. Badrinarayanan, and A. Rabinovich, “At-
las: End-to-end 3d scene reconstruction from posed images,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
VII 16, Springer, 2020, pp. 414–431 (cit. on pp. 23, 25, 30).

[39] S. Agarwal et al., “Building rome in a day,” Communications of the ACM, vol. 54, no. 10,
pp. 105–112, 2011 (cit. on p. 24).

44

[40] J.-M. Frahm et al., “Building rome on a cloudless day,” in Computer Vision–ECCV 2010:
11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-
11, 2010, Proceedings, Part IV 11, Springer, 2010, pp. 368–381 (cit. on p. 24).

[41] S. B. Kang and R. Szeliski, “3-d scene data recovery using omnidirectional multibaseline
stereo,” International journal of computer vision, vol. 25, pp. 167–183, 1997 (cit. on
p. 24).

[42] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise view selection
for unstructured multi-view stereo,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III
14, Springer, 2016, pp. 501–518 (cit. on p. 24).

[43] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs: Learning multi-
view stereopsis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2821–2830 (cit. on p. 25).

[44] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference for unstruc-
tured multi-view stereo,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 767–783 (cit. on p. 25).

[45] R. Chen, S. Han, J. Xu, and H. Su, “Point-based multi-view stereo network,” in Proceed-
ings of the IEEE/CVF international conference on computer vision, 2019, pp. 1538–1547
(cit. on p. 25).

[46] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao, “Neuralrecon: Real-time coherent 3d re-
construction from monocular video,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 15 598–15 607 (cit. on p. 25).

[47] Z. Hong and C. P. Yue, “Cross-dimensional refined learning for real-time 3d visual per-
ception from monocular video,” arXiv preprint arXiv:2303.09248, 2023 (cit. on p. 25).

[48] C. Häne, L. Heng, G. H. Lee, A. Sizov, and M. Pollefeys, “Real-time direct dense matching
on fisheye images using plane-sweeping stereo,” in 2014 2nd International Conference on
3D Vision, IEEE, vol. 1, 2014, pp. 57–64 (cit. on p. 25).

[49] N.-H. Wang, B. Solarte, Y.-H. Tsai, W.-C. Chiu, and M. Sun, “360sd-net: 360 stereo
depth estimation with learnable cost volume,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2020, pp. 582–588 (cit. on p. 25).

45

[50] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai, “Bifuse: Monocular 360
depth estimation via bi-projection fusion,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 462–471 (cit. on p. 25).

[51] C.-Y. Chiu, Y.-T. Wu, I. Shen, Y.-Y. Chuang, et al., “360mvsnet: Deep multi-view stereo
network with 360deg images for indoor scene reconstruction,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 3057–3066
(cit. on p. 25).

[52] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocular visual odom-
etry,” in 2014 IEEE international conference on robotics and automation (ICRA), IEEE,
2014, pp. 15–22 (cit. on p. 26).

[53] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in
European conference on computer vision, Springer, 2014, pp. 834–849 (cit. on p. 26).

[54] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 3, pp. 611–625, 2017 (cit. on p. 26).

[55] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based framework for global
pose estimation with multiple sensors,” arXiv preprint arXiv:1901.03642, 2019 (cit. on
p. 26).

[56] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam: Tightly-coupled
lidar inertial odometry via smoothing and mapping,” in 2020 IEEE/RSJ international
conference on intelligent robots and systems (IROS), IEEE, 2020, pp. 5135–5142 (cit. on
p. 26).

[57] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for omnidirectional cam-
eras,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2015, pp. 141–148 (cit. on p. 26).

[58] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3:
An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE
Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021 (cit. on p. 26).

[59] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras,” IEEE transactions on robotics, vol. 33, no. 5, pp. 1255–1262,
2017 (cit. on p. 26).

[60] Google, Grafika, https://github.com/google/grafika (cit. on p. 35).

46

https://github.com/google/grafika

[61] J. Huai, Y. Zhang, and A. Yilmaz, “The mobile ar sensor logger for android and ios de-
vices,” in 2019 IEEE SENSORS, 2019, pp. 1–4 (cit. on p. 35).

[62] D. Gillsjö, VideoIMUCapture-Android, https://github.com/DavidGillsjo/

VideoIMUCapture-Android, 2022 (cit. on pp. 35, 50).

[63] Ricoh, theta-plugin-library, https://github.com/ricohapi/theta-

plugin-library/tree/master (cit. on p. 36).

[64] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000 (cit. on
p. 37).

47

https://github.com/DavidGillsjo/VideoIMUCapture-Android
https://github.com/DavidGillsjo/VideoIMUCapture-Android
https://github.com/ricohapi/theta-plugin-library/tree/master
https://github.com/ricohapi/theta-plugin-library/tree/master

APPENDIX A

MAPF PERFORMANCE OF OUR RL MODEL IN 40 × 40
MAP

Figure A.1: Success rate with varying FOV settings in 40 × 40 Map

Figure A.2: Average steps with varying FOV settings in 40 × 40 Map

48

Figure A.3: Number of communication with varying FOV settings in 40 × 40 Map

49

APPENDIX B

DATA STRUCTURE OF 360° CAMERAS’ DATA
COLLECTION TOOL

The below data structure for Ricoh Theta V is developed based on [62].

1 syntax = "proto3";

2

3 package thetaimu;

4

5 message IMUInfo {

6 string gyro_info = 1;

7 float gyro_resolution = 2;

8 string accel_info = 3;

9 float accel_resolution = 4;

10 string mag_info = 5;

11 float mag_resolution = 6;

12 float sample_frequency = 7; //Hz

13 repeated float placement = 8;

14 }

15

16 message IMUData {

17 int64 time_ns = 1;

18 repeated float gyro = 2;

19 repeated float gyro_drift = 3;

20 repeated float accel = 4;

21 repeated float accel_bias = 5;

22 repeated float mag = 6;

23 repeated float mag_bias = 7;

24 enum Accuracy {

25 UNRELIABLE=0;

26 LOW = 1;

27 MEDIUM = 2;

28 HIGH = 3;

29 }

30 Accuracy gyro_accuracy = 8;

31 Accuracy accel_accuracy = 9;

50

32 Accuracy mag_accuracy = 10;

33 }

34

35 message VideoFrameMetaData {

36 int64 time_ns = 1;

37 int64 frame_number = 2;

38 int64 exposure_time_ns = 3;

39 int64 frame_duration_ns = 4;

40 int64 frame_readout_ns = 5;

41 int32 iso = 6;

42 float focal_length_mm = 7;

43 float est_focal_length_pix = 8;

44 float focus_distance_diopters = 9;

45

46 message OISSample {

47 int64 time_ns = 1;

48 float x_shift = 2;

49 float y_shift = 3;

50 }

51 repeated OISSample OIS_samples =10;

52 bool focus_locked = 11;

53 }

54

55 message CameraInfo {

56 //fx, fy, cx, cy, s

57 // for details on how to use the intrinsics, pose_translation ↩
and pose_rotation.

58 repeated float intrinsic_params = 1;

59 //Radial: k1,k2,k3, Tangential: k4,k5

60 repeated float distortion_params = 2;

61 bool optical_image_stabilization = 3;

62 bool video_stabilization = 4;

63 bool distortion_correction = 10;

64 int32 sensor_orientation = 14;

65

66 enum FocusCalibration {

67 UNCALIBRATED = 0;

68 APPROXIMATE = 1;

69 CALIBRATED = 2;

70 }

71 FocusCalibration focus_calibration = 5;

51

72

73 enum TimestampSource {

74 UNKNOWN = 0;

75 REALTIME = 1;

76 }

77 TimestampSource timestamp_source = 6;

78

79 enum LensPoseReference {

80 PRIMARY_CAMERA = 0;

81 GYROSCOPE = 1;

82 UNDEFINED = 2;

83 }

84 LensPoseReference lens_pose_reference = 7;

85 repeated float lens_pose_rotation = 8;

86 repeated float lens_pose_translation = 9;

87

88 message Size {

89 int32 width = 1;

90 int32 height = 2;

91 }

92 Size resolution = 11;

93 Size pre_correction_active_array_size = 12; //↩
SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE

94 repeated float original_intrinsic_params = 13;

95 }

96

97 message VideoCaptureData {

98 google.protobuf.Timestamp time = 1;

99 CameraInfo camera_meta = 2;

100 IMUInfo imu_meta = 3;

101

102 repeated IMUData imu = 4;

103 repeated VideoFrameMetaData video_meta = 5;

104 }

52

	Title Page
	Authorization
	Signature Page
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Overview
	1.2 Thesis Organization and Contributions
	1.2.1 Chapter 2: Optimizing Communication in MAPF
	1.2.2 Chapter 3: Leveraging 360° Cameras in 3D Reconstruction
	1.2.3 Chapter 4: Data Collection Tool for 360° Cameras
	1.2.4 Chapter 5: Conclusion and Future Works

	2 Optimizing Communication in Multi-Agent Path Finding
	2.1 Introduction
	2.2 Related Works
	2.2.1 Multi-Agent Path Finding (MAPF)
	2.2.2 MAPF via RL

	2.3 Problem Setup
	2.3.1 Formal Definition of MAPF Problem
	2.3.2 Types of Conflicts
	2.3.3 MAPF Environment

	2.4 Architecture of the RL Model
	2.5 Experiments
	2.5.1 FOV Settings
	2.5.2 Test Settings and Hardware Specifications

	2.6 Result
	2.6.1 Success Rate, Average Steps and Number of Communications
	2.6.2 Network Step Time
	2.6.3 Normalized Success Rate
	2.6.4 Key Findings and Recommendations

	3 Leveraging 360∘ Cameras in 3D Reconstruction
	3.1 Introduction
	3.2 Related Works
	3.2.1 3D Reconstruction
	3.2.2 Visual-based Pose Estimation

	3.3 Proposed Framework
	3.3.1 ERP Conversion
	3.3.2 Pose Estimation
	3.3.3 Pose Extraction of Cube Map Views
	3.3.4 3D Mesh Generation

	3.4 Experiment and Evaluation
	3.4.1 Comparison between 360° Camera and Perspective Camera
	3.4.2 Quantifying Data Requirements for 3D Reconstruction using 360° Camera
	3.4.3 Impact of Camera Man Removal on 3D Mesh Quality

	3.5 Discussion

	4 Data Collection Tool for 360° Cameras
	4.1 Introduction
	4.2 Obtaining Video and IMU Data from 360° camera
	4.3 Experiment

	5 Conclusion and Future Works
	5.1 Conclusion
	5.2 Future Works
	5.2.1 Communication-based MAPF
	5.2.2 3D Reconstruction with 360° Cameras

	References
	A MAPF Performance of our RL model in 40 × 40 Map
	B Data Structure of 360° Cameras' Data Collection Tool

