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Towards Effective and Efficient 3D Visual
Perception

by

Ziyang Hong

Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology

Abstract

We are witnessing developments in artificial intelligence (AI), where the most relevant
parts to us are embodied AI systems with robotic agents interacting with human users
in real-world environments. To serve in the embodied AI system, the agent robots need
visual intelligence, namely the three-dimensional (3D) perception of the surrounding envi-
ronment. This thesis is dedicated to enabling real-time low-cost edge deployment of visual
perception which is advocated by us as the future solution for embodied AI applications.

First, an end-to-end deep neural network pipeline for machinery visual perception,
CDRNet, is proposed. It jointly perceives a 3D scene’s geometry structure and semantic
labels. While conventional volumetric approaches for 3D perception tend to focus on the
global coherence of their reconstructions, which leads to a lack of local geometric detail,
CDRNet leverages the latent geometric prior knowledge in 2D image features by explicit
depth prediction and anchored feature generation, to refine the occupancy learning in
TSDF volume.

Besides, we find that this cross-dimensional feature refinement methodology can also
be adopted for the semantic segmentation task by utilizing semantic priors, to extract
both 3D mesh and 3D semantic labeling in real-time. Beyond public datasets for test-
ing, we further implement a real-time messaging system to support these aforementioned
perception tasks in real-life scenarios.

Finally, a software-hardware co-optimization system, Efficient-Grad is proposed to
enable the online AI model fine-tuning. It improves both throughput and energy saving
with negligible accuracy degradation during model training for deep convolutional neural
networks, by utilizing sparsity and asymmetry residing in the gradients for conventional
back propagation. Furthermore, the dedicated hardware architecture for sparsity utiliza-
tion and efficient data movement is optimized to support the Efficient-Grad algorithm in
a scalable manner, which leads to its superiority in terms of energy efficiency.
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1
Introduction

“Great research is often motivated by great needs.”

— Charles R. Qi, Deep Learning on Point Clouds for 3D Scene Understanding

1.1 Background and Motivation

Artificial intelligence (AI) will soon come true thanks to the drastic evolvement of the
underlying algorithms and supporting computing hardwares at an unprecedented pace
throughout the last two decades. The advent of AI will have a profound impact on
mankind amid its surging demand. Based on the market size, the major sub-fields of
AI can be roughly categorized as natural language processing, computer vision, and data
science. Among which, the top two fields of AI are just like the sensations of human beings,
which are the key intelligence that is essential for the subsequent complex intelligent
tasks. Enabling machine to mimic the perceptual and cognitive functions of human mind
is intriging but still far from being realized.

Computer vision is regarded as the most significant research problem for the AI com-
munity. The recognition may partially coming from the fact that vision plays the most
significant role in the history of evolution. There are archaeology and zoology researches
proving that, the Cambrian explosion is triggered by sudden evolution of the vision sense,
which means that vision dominates the evolution of animals [1]. Furthermore, going back
to human, approximately 50% of human’s neocortex is involved in visual processing [2].

As human beings live in the three-dimensional (3D) world, 3D computer vision sheds
light on most practical and daily-life problems. Currently, the demand for 3D vision
has become the largest among all AI tasks, the global market reached USD 22.28 billion
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Figure 1.1: Overview of the 3D perception applications.

in 2023 and will reach USD 50.98 billion in 2030 with a high compound annual growth
rate as 12.6% [3]. The roaring market growth is mainly due to its various applications
in many mainstay industries, such as building information modeling, virtual/augmented
reality, autonomous driving, and embodied AI robotics, as shown in Fig. 1.1. Obviously,
in addition to the great needs in terms of quantity, these applications reflect the impact
of 3D vision is rather huge, or “great” — by following the pun intended in the epigraph
of this chapter. This is true especially for the embodied AI robotics because they not
only increase the productivity for industries, also substitute the labor work just like
humanoids. Therefore, embodied AI robotics is of great importance and has appealed
significant research attention nowadays.

1.2 Prior Arts on 3D Visual Perception System

A typical embodied AI system is enabled by two major techniques, navigation for the agent
and the manipulation for the operator. It is noteworthy that both techniques require the
3D perception and physical control to ambient environment.

Fig. 1.2 illustrates a representative embodied AI platform whose verbal instructions
are shown at the bottom of each row. Each instruction can be dissected into four steps
which are shown in each column. In each row (namely for each task), the agent search
for an unseen object at an assigned location and move it to the target receptacle. It
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Figure 1.2: A typical embodied AI robotic system [4]. Cases of the robotic agents
doing chores according to the verbal instructions are included in both real-life environment
(in the top row) and a synthetic scene (in the bottome row).

is noteworthy that the agent needs to have 3D perception to the enviroment so as to
navigate itself, observe then differentiate different objects, and conduct operations. The
3D perception of agents is visualized in segmentation masking in colors and categories
bounding boxes. For instance, in the scene of the first row, first column, the agent searches
through according to the verbal instruction “Move toy animal from chair to table” and
then in 3D space it identifies the target object as “toy animal”, and the target start
receptacle as “chair”, as shown in the bounding boxes. Segementation in colors indicates
different roles: Red indicates the target object, blue for the start receptacle, and green for
the goal receptacle. Thus as per the agent’s perception, the chair is shaded as blue and
the toy animal is shaded as red. With all these inferences, the agent will subsequently
conduct the operation in this step once the perception shown in the scene is established.

In this particular example, 3D perception is achieved by constructing a semantic voxel
map which is built from 2D first-person semantic segementation. The 2D semantic seg-
mentation is inferred by a deep convolutional neural network (DCNN) and then further
back-project into the 3D counterpart. Researches about using DCNN and other NN vari-
ants are thriving nowadays, enabling many opportunites of better performance. They
create metric-semantic reconstruction that can be used for the robotic perception more
effectively.

Meanwhile, the robotic agent in Fig. 1.2 uses a RGB-D camera (Intel RealSense

3



Table 1.1: Computing Device Hierarchy with Normalized AlexNet Training Runtime
Hierarchy Edge Devices System on Chip Personal Computer Data Center Supercomputer

Sample
Device

Typical
Application

HW. Cost (in USD) <100 600 2k 176k (1 yr) 1B
Power (in Watt) 0.5 5 350 51k 60M

Normalized 10.4h (INT) 3.3h 5.6min 2.4s <1sTraining Runtime

D435i) with no mobile GPU on board. All the intensive model computations must be
sent back to the GPU powered workstation for processing. Because the controller on board
cannot afford the extensive computations in DNN models, which are normally handled by
personal workstations or beyond in terms of compute capability as shown in the current
computing platform hierarchy in Table 1.1. However, centralizing data from agents and
computing on the workstation impose great burden on both the communication bandwidth
between the agents and the workstation, and latency and privacy requirements on each
agent.

Table 1.1 compares the mainstream compute devices and their typical applicaitons
across the board. Controllers and processors on the robotic agent belong to the System-
on-Chip category. Although the hardware beyond personal computers nowadays can
handle the embodied AI tasks pretty well from the throughput/latency perspectives, they
are totally not affordable in terms of robotic agents. Besides, the consumed power on the
fly will also be a huge issue for a single robot. This dilemma raises a second research topic
about distributing the compute efforts into local edge devices for both model training and
inference.

Fig. 1.3 illustrates the necessity of on-device training. Data can be categorized as
either sensitive or non-sensitive from the users’ perspective. Chances are as the end
user, we do not wish to expose our sensitive data to the giant corporates for whatever
reasons. Furthermore, so far there is still transmission latency and bandwidth constraint
for wireless channels from time to time. A good paradigm without data uploading is to
pretrain the network on cloud, and then adopt it on the edge devices. The on-device
training module in the center plays a critical role becuase it is the most challenging and
computationally expenssive part in this paradigm.
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Figure 1.3: Overview of the on-device learning [5]. The pretrained models on cloud
are deployed to the edge devices and updated by the on-device training using the local
private data. As models are updated locally, inference can be conducted with the in-
situ refreshed model for many intelligent applications, such as facial recognition, drone
navigation, and object recognition.

1.3 Challenges Faced by the Perception System

Conventionally, 3D reconstruction is done by the point-clouds fusion which relies on range
sensors. M. Levoy et al. [6, 7] first proposed the fusion technique using the back-projected
3D points of each depth map pixel to construct a 3D mesh in 1996. As the arising and
democratization of the commodity computing device, this depth map fusion technique
was able to come out of the laboratory and to be deployed for consumers’ usage. Kinect-
Fusion [8] is the first work that utilized the depth map fusion on the consumer level
electronics to conduct real-time 3D reconstruction.

However, the measurement from range sensors is often noisy and suffering from low
albedo issue. It is a natural attempt to explore solely visual perception so as to get rid
of the dependence on range sensors. The major challenge for those visual-input methods
with differential geometry is two-fold: Incompleteness given the intensive computations.
It is reasonable because these multiview stereo algorithms are lifting the complexity of
the task from 2D images to 3D volume, which are too complex and cumbersome to solve
by hand-crafted designing rules and optimization methods. Therefore, learning-based
methods, such as neural networks are widely explored aiming to fit a high-dimensional
vector as weights to replace the nearly impossibly analytical solution of above.
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On the other hand, from the hardware perspective of a humanoid, the power consump-
tion that it takes to handle 3D perception models is mostly unaffordable for the processors
on board, unlike the workstation GPUs. What’s worse, the technology gains are dimin-
ishing with the increasingly apparent quantum tunneling effects as the size of transistors
approaches the physical limit, meaning that we can not simply rely on the momentum
of technology gains to nurture another miracle for the embodied AI just like the internet
and mobile devices for the past three decades. Or, just gambling on quantum computing
and hoping that one day it can be reliable. It has to be hardware efficiency improvement
from the ground up of the computing architecture design. This will help us successfully
achieve 3D perception for robotics and therewith enable ubiquitous intelligence.

There are research efforts dedicated to design the high-efficiency chips that accelerate
3D perception [9, 10]. Needless to say, the 3D perception in Fig. 1.2 is critical to em-
bodied AI. Enhancing the energy efficiency of both software and hardware shown in Fig.
1.3, intrigues practitioners who are building real embodied AI agents despite the great
challenges ahead.
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1.4 Dissertation Organization and Contribution

This dissertation focuses on the algorihtm and hardware co-design methodology of the
3D visual perception system, for embodied AI applications. The previous contents so
far have covered the “Why?” and “What?” regarding 3D perception in a high-level
comprehensive survey manner. The following contents in the dissertation will answer the
“How?” problem dedicated to the pursuit of effective and efficient 3D visual perception.
An illustration for the roadmap is shown in Fig. 1.4. The dissertation covers the essentials
for building an embodied AI agent’s perception system. From the perspective of this
humanoid, the visual data will first come in through the peripheral sensors (which are just
like eyes and cerebella) and its frontend and then be processed by the onboard backend.
The frontend shaded in green which consists of data capturing and perception algorithm,
is covered in Chapter 2 and Chapter 3. It’s like the control center of the humanoid’s
brain. The backend of the brain shaded in blue, where the actual learning and processing

Figure 1.4: Dissertation organization and contribution. Dash lines encircle each of
the following three chapters. Together they construct the 3D visual perception system of
the embodied AI agent.
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are conducted, is covered in Chapter 4.
Specially, we introduce the cross-dimensional refinement learning for 3D visual percep-

tion using video input in Chapter 2. We propose the neural network and its maximum-a-
posteriori optimization paradigm that is capable of to have effective metric-semantic 3D
mapping. In Chapter 3, we propose the real-time data streaming system for the 3D per-
ception neural network and build up the prototype on mobile phones for demonstration
on the edge side. In Chapter 4, we investigate the throughput-power budgets for visual
perception especially on edge devices, and propose the gradient-pruned sign-symmetric
feedback alignments for updating CNN at the edge with high energy efficiency. Chapter
5 concludes the dissertation.
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2
3D Visual Perception from Monocular

Video

“In order to investigate a subfield of a science, one bases it on the smallest possible number of

principles, which are to be as simple, intuitive, and comprehensible as possible, and which one

collects together and sets up as axioms.”
— David Hilbert, The New Grounding of Mathematics: First Report

This chapter discusses a LiDAR-free 3D perception algorithm, which is sparse, 2D-
prior-aided, and temporally coherent.

2.1 Introduction

Recovering 3D geometry and semantics of objects or environment scenes prevails these
days with the advent of ubiquitous digitization. Not only can the digitization of the
world where people live help them better understand their ambient environments, but also
enables robots to comprehend what they need to know about the world and then conduct
assigned tasks. Generally, with the ambient environment measurements as input, 3D
reconstruction and 3D semantic segmentation are two key 3D perception techniques [11–
13] in the computer vision society, which enable a wide range of applications, including
digital twins [14, 15], virtual/augmented reality (VR/AR) [8, 16], building information
modeling [17, 18], and autonomous driving [19, 20].

Tremendous research efforts have been made for 3D perception techniques. Conven-
tionally, research on 3D perception utilizes active range sensors to capture surface geome-
try information. Originated from KinectFusion [8], the commodity RGB-D range sensor is
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Figure 2.1: Debate on 3D perception: Human beings vs. Machines, who’s
better? Human and machines have their own advantages in different data modalities.
The example of machines here, Atlas, which was released in 2013, is equipped with LiDAR
and stereo cameras for 3D perception.

used to measure depth data first and then fuse it into Truncated Signed Distance Function
(TSDF) volume for 3D reconstruction. Although the follow-up depth-based TSDF fusion
methods [21–25] achieve detailed dense reconstruction results, they still suffer from global
incoherence due to the lack of sequential correlation, the tendency of noise disturbance
due to redundant overlapped calculations, and the incapability of semantic deduction due
to the lack of texture features.

Inspired by the recent advancements of both 2D computer vision [26] and supporting
hardware [27, 28], we believe that the ultimate modality for 3D perception should be
visual input, and therefore we aim to develop a 3D perception system that requires visual
input only. Although conventionally, machines rely on range sensors for 3D perception
which seems disadvantageous from the perspective of building a humanoid, they still have
their own advantage by having their nearly perfect working memory. This leads to an
interesting debate between themselves and humans regarding visual perception in Fig.
2.1, wherein the accurate memory that machines possess enables their potential for 3D
visual perception with just monocular and sequential input images, and no need for the
binocular stereo as human eyes. Such a debate raises two interesting research questions. 1)
Mimicking: Can the machine achieve 3D perception with 2D RGB input only effectively?
2) Surpassing: Can the visual 3D perception mentioned be achieved with a monocular
camera only?

10



Before we delve into the discussion of the visual-based solutions for 3D perception, it
is noteworthy that there is a line of research called Structure from Motion [29] that relies
on RGB images to restore camera poses and ambient 3D structures. However, they are
commonly designed for remote sensing and not able to meet the real-time requirements
of robotic applications.

Other than that, some explorations on 3D perception with RGB cameras on mobile
devices emerged given the ready availability of camera modules along with inertial mea-
surement units. The problem of reconstructing 3D geometry with posed RGB images
input only is referred to as multi-view stereo (MVS). Existing methods for MVS that
are based on deep learning, tend to adopt a volumetric scheme by directly regressing the
TSDF volume [16, 30–32] either as a whole or in fragments. However, these volumetric
learning methods extract 3D geometric feature representation simply from the back pro-
jection of 2D image features, resulting in a mismatch to the 2D information priors for the
predicted 3D reconstruction. Moreover, the intrinsic end-to-end learning manner and the
lack of local details on the reconstructed mesh of these volumetric schemes result in an
inferior semantic deduction based on its 3D reconstruction prediction.

What’s worse, these learning-based methods tend to store their entire computational
graphs in memory for aggregation and require prohibitive 3D convolution operations [30,
31, 33], which keeps them from being deployed on robots due to the real-time and low-
latency requirements in SLAM. These limitations motivate our key idea to utilize 2D
explicit predictions to further impose a light-weight feature refinement on the 3D features
input in a sparse manner, while keeping the global coherence within the fragments. Unlike
these preceding learning-based volumetric works, we conjecture that the utilization of 2D
prior knowledge coming out of explicit predictions as a latent feature refinement plays a
significant role in learning the feature representation in 3D perception. In addition, the
feature refinement brought by 2D explicit prediction can be operated within the fragment
input for keeping the computation redundancy and thus overhead low, while having the
global coherence by correlating different fragments to extract the target 3D semantic
mesh.

In this section, we propose a novel framework, CDRNet, to accomplish both 3D mesh-
ing and 3D semantic labeling tasks in real-time. This section is an extension of its
conference version [34] with more analysis and discussions on the construction of frag-
ment bounding volume, the derivation of the feature refinement under the maximum a
posteriori optimization, and the implementation of the real-time 3D perception system.

11



Our key contributions are as follows.

1. We propose a novel, end-to-end trainable network architecture, which refines the
3D features cross-dimensionallywith the prior knowledge extracted from the explicit
estimations of depths and 2D semantics.

2. The proposed cross-dimensional refinements yield more accurate and robust 3D
reconstruction and semantic segmentation results. We highlight that the explicit
estimations of both depths and 2D semantics serve as efficient yet effective prior
knowledge for 3D perception learning.

3. To achieve real-time 3D perception capability, our approach performs both geomet-
ric and semantic localized updates to the global map. We present a progressive 3D
perception system that is capable of real-time interaction with input data streaming
from cellphones with a monocular camera.

We organize the remainder as below. A brief review of related works is presented in
Sec. 2.2. In Sec. 2.3.1, we introduce the joint fragment learning on depth, 2D semantic
category, intermediate TSDF, and occupancy using key frames input, for the following
cross-dimensional refinements of TSDF and 3D semantics. For each fragment, the ge-
ometric features are progressively extracted in a coarse-to-fine hierarchy using binomial
inputs GRU to build the learned representations of 3D. Sec. 2.3.2 describes the cross-
dimensional refinements for 3D features that refines 3D features with anchored features
and semantic pixel-to-vertex correspondences enabled by the depth and 2D semantic pre-
dictions, which helps the learning of not only the TSDF value but also the 3D semantic
labeling in a sparsified manner. We also present the implementation details including loss
design in Sec. 2.3.3.

2.2 Related Work

2.2.1 Voxelized 3D Semantic Segmentation

The learning of semantic segmentation on the voxelized map started from [35], which
extends TSDF fusion pipeline [8] with per-pixel labels. 3DMV [36] and MVPNet [37] fur-
ther combined both depth and RGB modalities to train an end-to-end network with 3D
semantics for voxels and point clouds, respectively. PanopticFusion [38] performed map
regularization based on adopting a CRF on the predicted panoptic labels. Kimera [39]
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Figure 2.2: Overview of CDRNet. Posed RGB images from monocular videos are
wrapped as fragment input for 2D feature extraction, which is used for both depth and 2D
semantic predictions for cross-dimensional refinement purposes. To learn the foundational
3D geometry before conducting refinements, the extracted 2D features are back-projected
into raw 3D features 𝒱𝑠 in different resolutions without any 2D priors involved. At each
resolution, after being processed by the GRU, the output feature 𝐿𝑠 in the local volume is
further fed into depth and semantics refinement modules sequentially to have a 2D-prior-
refined feature with better representations.

incorporated visual odometry, multi-frame meshing, and 2D semantic annotation tech-
niques together in a modular way, where an off-the-shelf 2D network was used to generate
the 2D semantics and then directly annotate to each 3D point during the bundled ray-
casting. Atlas [30] utilized its extracted 3D features and passed them to a set of semantic
heads for voxel labeling, the pyramid features are proven to have strong semantics at all
scales than the gradient pyramid in nature, as proven in [26]. BPNet [40] proposed to
have a joint-2D-3D reasoning in an end-to-end learning manner. Two derivative works [41,
42] of RoutedFusion incorporated semantic priors into their depth fusion scheme and re-
moved their routing module for less overhead. However, none of these works utilize the
prior knowledge within the estimated 2D semantics as a 3D feature refinement.

2.2.2 Volumetric 3D Surface Reconstruction

Volumetric TSDF fusion became prevalent for 3D surface reconstruction starting from the
seminal work KinectFusion [8] due to its high accuracy and low latency. A follow-up work,
PSDF-Fusion [43] augmented TSDF with a random variable to improve its robustness to
sensor noise. Starting from DeepSDF [43], the learned representations of TSDF using
depth input dominates the current fad. These learning-based substitutes [15, 21–25, 44]
to TSDF fusion achieve impressive 3D reconstruction quality compared to the baseline
method with the availability of RGB-D range sensors.

Given the fact that range sensors have relatively higher cost and energy consumption
than RGB cameras, MonoFusion [45] is one of the first works to learn TSDF volume from
RGB images by fusing the estimated depth into an implicit model. Atlas [30] started the
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trend of learning-based methods by a direct regression on TSDF volume. NeuralRecon [16]
achieved a real-time 3D reconstruction learning capability by utilizing sparse 3D convo-
lutions and recurrent networks with key frames as input. TransformerFusion [46] and
VoRTX [31] introduced transformers [47] to improve the performance by more relevant
inter-frame correlation. These learning-based methods prevail thanks to the availability
of these general 2D feature extractors, such as FPN [26] and U-Net [48]. 2D information
in RGB images can be effectively extracted and further utilized for constructing their 3D
perception counterparts.

However, the learning of the explicit representations of 2D latent geometric features,
such as depths and semantics, is typically ignored by all the prior arts. They only treat
the 2D feature as an intermediate in the network and then conduct ray back-projection
upon it, without considering the explicit representations for their 3D embodiment, which
we found are significant prior knowledge for 3D perception. To extract depth as the ex-
plicit 2D representation, VolumeFusion [32] and SimpleRecon [49] performed local MVS
and further fused it into TSDF volume with its customized network, while 3DVNet [33]
performed sparse 3D convolutions on the feature-back-projected point cloud. Different
from above, our method extracts the 2D representations from light-weight network mod-
ules, including a portion of MVSNet [50] for depth and a simple 2D MLP head for 2D
semantics, to conduct the 3D feature refinements. The refinement incorporates the geo-
metric and semantic prior information to improve the generalizability of our network by
correlating the 2D representations in their 3D counterparts.

To the best of our knowledge, we present the very first learning-based method which
uses posed RGB images input only to conduct 3D perception tasks in real time, including
3D meshing and semantic labeling.

2.3 Methods

Given a posed image sequence I, our goal is to extract a 3D mesh model that can represent
both 3D geometry and 3D semantic labeling, i.e., 3D meshing with vertices 𝒦 ∈ ℝ3,
surfaces 𝒢 ∈ ℕ3, and its corresponding 3D semantic labeling 𝒮 ∈ ℕ. We achieve this
goal by jointly predicting TSDF value 𝑇 ∈ [−1, 1] and semantic label 𝑆 ∈ ℕ for each
voxel, and then extracting the mesh with the marching cubes [7]. Moreover, our proposed
method aims to establish a real-time capable perception system for the two tasks. To
quantitatively evaluate the efficiency of conducting these tasks simultaneously, we define
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a 3D perception efficiency metric 𝜂3𝐷 in Sec. 2.4.1 by involving frames per second (FPS)
in runtime. The proposed network architecture is illustrated in Fig. 2.2.

2.3.1 Sparse Joint-Fragment Learning in a Coarse-to-Fine

Manner

With the inherent nature of great sparsity in the ordinary real-world 3D scene, we effi-
ciently extract the 3D feature from each input scene by sparse 3D convolutions to without
redundant computations. Even though, the memory overhead of processing a 3D scene
is still prohibitive, thus we fragment the whole 3D scene to release the memory burden
of holding up the huge 3D volume data and progressively handle each of them. Inspired
by [16, 30, 31, 33, 51], we adopt a resolution-varying coarse-to-fine learning paradigm
for the sparse 3D convolutions to effectively exploit the representation of 3D features in
multiple scales. At each resolution, the raw features before refinements in a fragment
bounding volume (FBV) is extracted from a GRU by correlating local features and global
feature volume, as described respectively in the subsections below.

FBV Construction by Image Features

Following [16, 52], we select a set of key frames as the input sequences out of a monocular
RGB video by querying on each frame’s pose, namely the relative translation and optical
center rotation with empirical thresholds, 𝜃𝑘𝑒𝑦 and 𝑡𝑘𝑒𝑦. Key frames I, and their camera
intrinsics K, and transform matrices T ∈ 𝑆𝐸(3) which is an inversion of the camera pose,
are all wrapped into a fragment F𝑖 = {I𝑖,𝑗 , K𝑖,𝑗 , T𝑖,𝑗 ∣ 𝑗 = 1 … 𝑁𝑘} as the input to the
network, where 𝑖, 𝑗, and 𝑁𝑘 denote the fragment index, the key frame index, and the
number of key frames in each fragment, respectively. View frustums of each key frame’s
in the fragment combine into an FBV that is valid only at runtime. Fig. 2.3 illustrates
the construction process of the corresponding FBV of a fragment. The blue-shaded planes
represent the bottom of the view frustums whose minimum and maximum coordinates
will be accumulated to form the boundary of FBV.

Once the fragment F𝑖 is constructed, it is processed by a 2D feature extractor pyramid
to extract image features. In the decoder part of the extractor pyramid, three different
resolutions of feature maps are extracted sequentially as 𝒫𝑠 ∈ {𝑃2, 𝑃3, 𝑃4}, where the suffix
notation of 𝑃 denotes the scaling ratio level in log2 similar to [26]. The extracted feature
𝒫𝑠 in the Y-up camera coordinate is then back-projected into a local raw 3D features
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Figure 2.3: Illustration of the FBV construction process. The white box con-
structed with view frustums is defined as FBV. For simplicity, this toy example is con-
structed with 𝑁𝑘 = 3 and voxelized with a given voxel size.

𝒱𝑠 in the Z-up world coordinate, according to the projection matrix of each frame in F𝑖.
Raw 3D features in the FBV are first voxelized and sparsified starting from the coarse
stage, and then used to index and produce features of the next stage. We hereby define
the FBV of the current resolution as ℱ𝑠,𝑖 = {𝑇 𝑥×𝑦×𝑧

𝑠,𝑖 , 𝑆𝑥×𝑦×𝑧
𝑠,𝑖 } that is conditioned on the

pyramid layers 𝒫𝑠, where all the 3D voxels that are casted in the view frustums of current
F𝑖 are included.

Initial Depth and 2D Semantics Learning

With the fine feature 𝑃2 as input, we build up differentiable homography fronto-parallel
planes for the coarse-level depth prediction 𝐷̂4. Likewise, 2D semantics prediction ̂𝑆2𝐷

4
is extracted with a pointwise convolutional decoder as the 2D semantic head using 𝑃2.
The resolution gap between the input and output feature map provides generalizability.
The initial depth estimation is retrieved from the features using a light-weight multi-view
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stereo network via plane sweep [50]. For each source feature map 𝑥 in 𝑃2, we conduct
the planar transformation x𝑗 ∼ H𝑗(𝑑) ⋅ 𝑥, where “∼” denotes the projective equality and
H𝑗(𝑑) is the homography of the 𝑗th key frame at depth 𝑑. The 𝑗th homography1 in a
given F𝑖 is defined as:

H𝑗(𝑑) = 𝑑 ⋅ K𝑗 ⋅ (T𝑗 ⋅ T−1
1 ) ⋅ K𝑇

1 . (2.1)

To measure the similarity after conducting homography warping, we calculate the variance
cost of x𝑗 and further process it with an encoder-decoder-based cost regularization net-
work. The output logit from the regularization network is treated as the depth probability
on each plane and the soft argmin [50] is conducted to have initial depth predictions.

Geometric and Semantic GRU Fusion

As mentioned in Sec. 2.3.1, as the 2D features are extracted in different resolutions, they
are back-projected from each of the pyramid level in 𝒫𝑠 into raw geometric 3D features
𝒱𝑠 ∈ {𝑉2, 𝑉3, 𝑉4}, which are further sparsified by sparse 3D convolutions. To improve the
global coherence and temporal consistency of the reconstructed 3D mesh, following [16], we
first correlate the sparse geometric feature 𝒱𝑠 in the current ℱ𝑠,𝑖 using GRU, with the local
FBV hidden states 𝐻𝑠,𝑖−1 whose information coming from all of the previous fragments
ℱ𝑠,𝑖′ , 𝑖′ < 𝑖 and coordinates are masked to be the same as 𝒱𝑠. Such correlation outputs
a temporal-coherent local feature 𝐿𝑠,𝑖 for each stage 𝑠, which is used to generate dense
occupancy intermediate 𝑜𝑠,𝑖, and passed to the 2D-to-3D cross-dimensional refinements.
To fuse the global feature volume for the entire scene 𝐺𝑠,𝑖, we first densify 𝐺𝑠,𝑖−1 and 𝐿𝑠,𝑖

into real world point coordinates and further sparsify them with the point coordinates for
upcoming sparse convolutions. In the GRU, 𝐺𝑠,𝑖−1 and 𝐿𝑠,𝑖 are first processed by sparse
convolutions and then serving as the hidden state and candidate input, respectively. 𝐻𝑠,𝑖

is accordingly updated with the coordinates of 𝒱𝑠 as masks.
Unlike [16], we reuse the same parameters in GRU to process the back-projected and

upsampled 3D semantic features to generalize better for the semantic prediction ̂𝑆 in the
current FBV. This is because inputting TSDF and semantic features sequentially into
GRU enables its selective fusion across modalities, thus the feature extracted from the
hidden state incorporates more semantic information, as pointed out in [53]. For the sake
of learning 3D features consistently between scales, we update 𝒱𝑠 at each stage by fusing
with the upsampled 𝐿𝑠+1,𝑖. Inspired by the meta data mechanism proposed in [49], we

1For brevity’s sake, the transformation from homogeneous coordinates to Euclidean coordinates in the
camera projection is omitted here.
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further concatenate sparse features, with sparse TSDF, occupancy and semantics after
masking with 𝑜𝑠,𝑖, as the meta feature 𝐿𝑠+1,𝑖 to be upsampled. We found the inclusion of
semantic information in the hidden state of GRU helps build up a good starting point for
the upcoming feature refinements, which is verified in the ablation.

2.3.2 2D-to-3D Cross-Dimensional Refinements

The raw coherent features from GRUs lack detailed geometric descriptions, leading to
unsatisfactory meshing and semantic labeling results. To overcome these issues, we pro-
pose to leverage the 2D feature that is latent after incorporating the learning of depth
and semantic frame for refinement purposes. We notice that with the learning of depth
and 2D semantics, the 2D features now reside in the latent space which can generalize to
more accurate 3D geometry and semantics via cross-dimensional refinements.

2D-to-3D Prior Knowledge

Consider a probabilistic prior in the latent space of the output coherent feature coming
from GRU, which accounts for the prior knowledge that the pixel information in both
depth predictions and 2D semantic predictions should produce high confidence matching
with regard to their own 3D representations. The prior conditioned 3D feature for both
perception tasks is defined as:

𝑋𝑝𝑟𝑖𝑜𝑟 = 𝑓(𝐿𝑠,𝑖) = 𝑓(𝐻𝑠,𝑖(𝒱𝑠, 𝐻𝑠,𝑖−1 ∣ ℱ𝑠,𝑖)) , (2.2)

where 𝑓(⋅) is the 2D-to-3D feature refinement process for either 3D meshing or 3D semantic
labeling, whose input is 𝐿𝑠,𝑖 extracted from 𝒱𝑠 and 𝐻𝑠,𝑖−1 given ℱ𝑠,𝑖. We borrow the
notation of 𝐻𝑠,𝑖 to be a constructor function 𝐻𝑠,𝑖(⋅) indicating GRU. For each voxel in
ℱ𝑠,𝑖, both TSDF and semantic labeling predictions can be formulated as:

̂𝐼𝑠,𝑖 = 𝜖ℎ(𝐻𝑠,𝑖(𝒱𝑠, 𝐻𝑠,𝑖−1 ∣ ℱ𝑠,𝑖)) + (1 − 𝜖)𝑋𝑝𝑟𝑖𝑜𝑟 , (2.3)

where ̂𝐼𝑠,𝑖 ∈ ℱ𝑠,𝑖 is the refined prediction; 𝜖 is a random variable for the respective prior,
which is jointly learned by the feature refinement modules representing the 2D-to-3D
priors and the GRU network trained with maximum likelihood estimation losses; ℎ(⋅) is
the prediction head. The proof of Eq. (2.3) can be found in Sec. 2.3.2.

The key insight is that the voxels back-projected from either depth prediction or
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semantic label prediction of the input images has strong evidence on its 3D counterparts.
We hereby define anchored voxels 𝛼𝑖, as those voxels in ℱ𝑠,𝑖 that are incorporating all the
back-projected depth points, given the fact that the 3D reconstruction task is essentially
an inverse problem. We propose two progressive feature refinement modules as follows to
learn the high confidence of the refined features in latent space such that a more accurate

̂𝐼𝑠,𝑖 can be extracted with the help of 2D-to-3D prior knowledge.

MAP Optimization

The derivation for Eq. (2.3) is obtained here.

Proof. Considering the 3D feature extraction network described in Sec. 3.1 of the main
body without CDR priors, the temporal-coherent local feature 𝐿𝑠,𝑖 at stage 𝑠 can be
inferred by a parametric GRU fusion with the input of a concatenation between the raw
geometric feature 𝒱𝑠 and the upsampled 3D feature from previous stage 𝐿𝑠+1,𝑖 as,

𝐿𝑠,𝑖 = 𝐻𝑠,𝑖(Concat(𝒱𝑠,Up(𝐿𝑠+1,𝑖)), 𝐻𝑠,𝑖−1) , (2.4)

𝐻𝑠,𝑖 = 𝐺𝑠,𝑖[
𝑖

∑
𝑖′=1

ℱ𝑠,𝑖′ .coords()] , (2.5)

where the hidden state of 𝐻𝑠,𝑖 under current fragment F𝑖 is extracted from the global
feature volume 𝐺𝑠,𝑖 with the masking coming from the coordinates of 𝒱𝑠 as valid. The
target quantity prediction is estimated from the previous hidden state 𝐻𝑠,𝑖−1 as below,

̂𝐼𝑠,𝑖 = ℎ(𝐿𝑠,𝑖) = ℎ(𝐻𝑠,𝑖(𝒱𝑠, 𝐻𝑠,𝑖−1 ∣ ℱ𝑖)) = 𝑔 ̂𝜃(F𝑖) . (2.6)

where the hidden layer ℎ(⋅) is constructed with a single layer perceptron for the target
quantity prediction head, 𝜃 denotes the overall trainable parameters in the network, and
naturally 𝑔 ̂𝜃(⋅) denotes the entire neural network mapping from the posed image fragment
to the target quantity prediction under the trained ̂𝜃.

Then at the time of training, given 𝑁𝑏 batches of F𝑖 as the input and the voxel data
pair values in the sparsified FBV, 𝐼𝑖 ∈ ℱ𝑖 = {𝑇 𝑁𝑜

𝑖 , 𝑆𝑁𝑜
𝑖 } as the groundtruth of the target

quantity estimation for each stage of the coarse-to-fine hierarchy while the number of
occupied voxels is defined as,

𝑁𝑜 = len(𝒱𝑥×𝑦×𝑧
𝑠 [ ̂𝑜𝑖].flatten()) , (2.7)
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Figure 2.4: Loss function against trainable 𝜃 on the ScanNet validation dataset.
(a) Negative log-likelihood against 𝜃, namely the target function in Eq. (2.8); (b) Negative
log-product of posterior and evidence against 𝜃, namely the target function in Eq. (2.10).
𝜃suffix denotes the optimal 𝜃 in the “suffix” optimization situation. Optimizing with MAP
in (b) can generalize more expressive 𝜃 as justified in the experiments.

𝜃 can be estimated following maximum likelihood estimation (MLE) as below:

̂𝜃MLE = argmax
𝜃

𝑁𝑏

∏
𝑖=1

𝑁𝑜

∏
𝑘=1

𝑝(𝐼𝑖,𝑘 ∣ F𝑖, 𝜃)

= argmax
𝜃

𝑁𝑏

∑
𝑖=1

𝑁𝑜

∑
𝑘=1

log 𝑝(𝐼𝑖,𝑘 ∣ F𝑖, 𝜃)

= argmin
𝜃 ∑

𝑙∈{𝑇 ,𝑆}

𝑁𝑏

∑
𝑖=1

𝑁𝑜

∑
𝑘=1

ℒ𝑙( ̂𝐼𝑖,𝑘, 𝐼𝑖,𝑘) ,

(2.8)

where ℒ𝑙 is the respective loss that is responsible for each type of target quantity. It can
be categorized as either a regression or a classification problem and hence derived from
the likelihood 𝑝(𝐼𝑖,𝑘 ∣ F𝑖, 𝜃). Readers are suggested to refer to Sec. 5.5 in [54] for further
details about the loss. Without loss of generality, we plotted the ℒ𝑙(𝜃)-𝜃 characteristic in
Fig. 2.4 by adopting the same visualization methods described in [55, 56]. Fig. 2.4a shows
the mean absolute error loss for Truncated Signed Distance Function (TSDF) prediction,
where 𝜃 is optimized with MLE and finalized as ̂𝜃MLE = 𝜃MLE. Thus, at inference with
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the trained parameters substituted in Eq. (2.6),

̂𝐼𝑖 = 𝑔 ̂𝜃MLE
(F𝑖) = 𝑔𝜃MLE

(F𝑖) . (2.9)

Via Bayes’ rule, we hope to optimize the training process in a maximum a posteriori
(MAP) perspective with the CDR priors, namely,

̂𝜃MAP = argmax
𝜃

𝑁𝑏

∏
𝑖=1

𝑁𝑜

∏
𝑘=1

𝑝(𝐼𝑖,𝑘 ∣ F𝑖, 𝜃) × 𝑝(𝜃)

= argmax
𝜃

𝑁𝑏

∑
𝑖=1

𝑁𝑜

∑
𝑘=1

(log 𝑝(𝐼𝑖,𝑘 ∣ F𝑖, 𝜃) + log 𝑝(𝜃))

= argmin
𝜃

−
𝑁𝑏

∑
𝑖=1

𝑁𝑜

∑
𝑘=1

(log 𝑝(𝐼𝑖,𝑘 ∣ F𝑖, 𝜃) + log 𝑝(𝜃)) ,

(2.10)

where 𝑝(𝜃) denotes the CDR prior probability on network parameters which incorporates
2D information to construct the 3D counterpart. The intuitive mechanism is explained in
Sec. III-B1. To generate the CDR priors, we abstract the CDR modules as a dedicated
hidden-layers network ℎ𝑝𝑟𝑖𝑜𝑟(⋅) whose 2D prior distribution 𝑝(𝜃) is included. The target
quantity estimation with CDR priors involved can be retrieved as,

̂𝐼𝑖MAP
= 𝑔𝜃MAP

(F𝑖)

= ℎ(ℎ𝑝𝑟𝑖𝑜𝑟(𝐻𝑠,𝑖))
= 𝜖𝑔𝜃MLE

(F𝑖) + (1 − 𝜖)𝑔𝜃𝑝𝑟𝑖𝑜𝑟(F𝑖) ,

(2.11)

where 𝑔𝜃𝑝𝑟𝑖𝑜𝑟(⋅) is the functional mapping from F𝑖 to ℎ𝑝𝑟𝑖𝑜𝑟(𝐻𝑠,𝑖) similar to Eq. (2.6); 𝜖
denotes the weighting factor that is learnt by the network to generalize the offset rela-
tionship between 𝜃𝑝𝑟𝑖𝑜𝑟 and 𝜃MLE. Merging the distributions of 𝜃MLE and 𝜃𝑝𝑟𝑖𝑜𝑟, we have
the posterior corresponding to 𝑔𝜃MAP

(F𝑖) and the optimization ̂𝜃MAP = 𝜃MAP, which are
shown in Fig. 2.4b.

At the time of inference when training is done, with the estimated parameter ̂𝜃 in
the trained network, the hidden state output from GRU fusion is equivalent to the MLE
optimized parameter’s result as in Eq. (2.6). While the prior-conditioned 3D feature is
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equivalent to prior-optimized result, namely,

𝑔𝜃MLE
(F𝑖) = ℎ(𝐻𝑠,𝑖(𝒱𝑠, 𝐻𝑠,𝑖−1 ∣ ℱ𝑖)) , (2.12)

𝑔𝜃𝑝𝑟𝑖𝑜𝑟(F𝑖) = 𝑋𝑝𝑟𝑖𝑜𝑟 . (2.13)

Thus, by substituting Eq. (2.12) and Eq. (2.13) into Eq. (2.11), Eq. (3) holds. Similarly,
̂𝜃 that is responsible for semantics predictions can be retrieved by enforcing ℒ𝑙 = ℒCE.

The proof is complete.

It is noteworthy that, to visualize the loss landscape for such a high-dimensional deep
neural network (beyond 12 million parameters in CDRNet), it is impossible to compare
the loss sweeping through all variable 𝜃 entries even after some dimension decomposition
techniques such as PCA. Therefore, to investigate the loss landscape of the neural network,
one needs to find a workaround to bypass the 𝜃 sweeping. To this end, we adopt the same
loss visualization methods as in [55, 56] by computing:

ℒ𝑙(𝑔𝜃(F𝑖), 𝐼𝑖) = ℒ𝑙(𝜃)

= ℒ𝑙((1 − 𝛼) ⋅ 𝜃MLE + 𝛼 ⋅ 𝜃𝑝𝑟𝑖𝑜𝑟) ,
(2.14)

where ℒ𝑙(𝜃) is achieved by substituting Eq. (2.6) into Eq. (2.8) for varying 𝛼 who serves
as a linear interpolation between two different parameter vectors in parameter space.
Such visualization enables one to comprehend how is CDR priors benefit to the learning
of the backbone network by optimizing into 𝜃MAP with a lower testing loss in parameter
space. Fig. 2.4 shows the ℒ𝑇 (𝜃)-𝜃 characteristics under MLE and MAP optimizations,
respectively. In Fig. 2.4a, we remove feature refinement modules in CDRNet to retain
the network in an MLE optimization fashion, the network parameters are learned as

̂𝜃 = 𝜃MLE; whereas in Fig. 2.4b, the parameters in CDRNet are learned as ̂𝜃 = 𝜃MAP

which is lower than 𝜃MLE with the help of the 2D-to-3D prior knowledge 𝑝(𝜃) during
optimization, proving the efficacy in generalizability of the proposed 2D-to-3D refinement
method.

Depth-Anchored Occupancy Refinement

Unlike the volumetric methods [16, 30] that directly regress on the TSDF volume, we
propose a novel module in each stage s that can explicitly refine the initial depth, predict
depths in resolutions, and further create the 3D anchored features with the depth predic-
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Figure 2.5: Workflow of the depth anchor refinement. Anchored voxels are extracted
from depth points and further serve as a geometric prior for the occupancy refinement.

tion, as shown in Fig. 2.5. The anchored feature is generated by 3D sparse convolutions
with an anchored voxel on 𝑜𝑖

2. Intuitively, the anchored voxel has higher confidence
of achieving a valid 𝑜𝑖 and 𝑇𝑠,𝑖 close to zero. We imposed the anchored feature on the
occupancy feature to reinforce the occupancy information brought by the depth prior.

Inspired by [33, 57], we conduct PointFlow algorithm for each stage in the coarse-to-
fine structure 𝒱𝑠 to determine the depth displacement on the initial depth prediction such
that finer depth prediction can be achieved. Different from the PointFlow algorithm used
in [33], we utilize the back-projected depth points from all 𝑁𝑘 views in the fragment to
query an anchored voxel, which can be further aggregated with 𝑜𝑖. Fig. 2.6 illustrates
how these hypothesis points are selected and turned into depth displacement prediction,
such that the anchored voxel can be generated.

The anchored voxel index in the 3D volume is sparsified as a mask to update the
occupancy prediction as ̂𝑜𝑖 in the following:

̂𝑜𝑖 = 𝑜𝑖 ∩ 𝛼𝑖 . (2.15)

The enhanced occupancy prediction ̂𝑜𝑖 is used to condition the TSDF volume at the
current stage to generate the refined ̂𝑇𝑖, which is further sparsified with a light-weight
pointwise convolution and upsampled to concatenate with 𝐿𝑠,𝑖.

2The universal stage suffix 𝑠 is hereinafter omitted for brevity.
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Figure 2.6: Anchored voxel generation for occupancy refinement. An example
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with geometrically valid voxel highlighted in green. The initial depth prediction is back-
projected into FBV and displaced by trilinear interpolation on all depth points, in the
range of 6 additional hypothesis points for each depth point. The voxels on the top are
set as half transparent for clarity.

Pixel-to-Vertex Matching Semantic Refinement

In addition to the depth anchor refinement, we propose a semantic cross-dimensional
refinement which utilizes the semantic prior that lies in the 2D semantic prediction to
have a refined 3D voxel semantic prediction. First, we impose a 2D semantic head on
the 2D feature backbone for learning the 2D semantic prior information that is useful for
3D voxel semantic labeling. Second, the sparse 3D feature 𝐿𝑠,𝑖 is passed to pointwise 3D
convolution layers and comes up with the initial 3D voxel semantic labeling predictions
in respective scales. Third, to conduct the semantic feature refinement, we observed that
there is a sole 3D voxel counterpart in ℱ𝑠,𝑖 for each pixel on a 2D semantic prediction of
I𝑖,𝑗 , since the surface edges are encoded as vertices. We define these vertices as the one-
on-one matching correspondences to their camera-projected pixels, which are recorded in
a matching matrix for masking the 2D features 𝒫𝑠.

The upper part of Fig. 2.7 illustrates the design of such matching matrix so as to
correlate the pixel-vertex pairs for each frame I𝑖,𝑗 across all vertices in ℱ𝑠,𝑖. We construct
the matching matrix M = {⃖⃖⃗𝑚𝑖𝑑𝑥}𝑁

𝑖𝑑𝑥=1 for each semantic labeling frame, where 𝑁 is the
number of the vertices in the volume ℱ𝑠,𝑖. Each column of the matching matrix M is
defined as:

M(𝑖𝑑𝑥) = ⃖⃖⃗𝑚𝑖𝑑𝑥 =
⎡
⎢
⎢
⎢
⎣

𝑢𝑖𝑑𝑥

𝑣𝑖𝑑𝑥

mask

⎤
⎥
⎥
⎥
⎦

. (2.16)
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Figure 2.7: Workflow of the pixel-to-vertex matching refinement. Upper: Match-
ing matrix M for pixel-to-vertex correspondence is constructed with camera projection.
The red-shaded boxes in the 3D volume denote an example of valid correspondence pairs
of the 2D semantic prediction ⃖⃖⃗𝑚𝑎 and its surrounding 3D scene. The green and purple
boxes in the 3D volume view denote the occluded vertex and out-of-view vertex that is
not imaged in the 2D semantic prediction, which correspond to ⃖⃖⃗𝑚𝑏 and ⃖⃖⃗𝑚𝑧, respectively;
Lower: The 2D features are further masked by M(𝑎) with the mapped coordinates from
the sparse 3D features of the scene that are valid for the current view.

For each column, each pixel-vertex pair recorded in the matching matrix, i.e., the 𝑖𝑑𝑥th

vertex in the 3D volume on the right-hand side of the upper part and its correspondence
pixel on the left-hand side is recorded. The last entry of the pixel-vertex pair represents
a mask which is recorded as valid when the 2D correspondence for M is in the current
view frustum of the frame.

In the lower part of Fig. 2.7, the constructed matching matrix M will be used for
masking each of the feature maps 𝒫𝑠 with the log2 scale of 𝑠 to create a refined feature,
whose voxel number is the same as the number of sparse 3D features. Meanwhile, the
coordinates of the sparse 3D features 𝐿𝑠,𝑖 are mapped as the coordinate of the refined
feature. By doing so, the underlying semantic information from the 𝒫𝑠 can be incorpo-
rated by 𝐿𝑠,𝑖, such that better 3D semantic prediction can be achieved. Then we use
the sparse pointwise convolution to extract its underlined feature from 2D semantics and
concatenate it with 𝐿𝑠,𝑖 to create 𝐿𝑠−1,𝑖 with semantic information for the refinement in
the next finer stage, so as to ensure the 2D semantic priors to have reliable refinement on
the sparse coherent features. Significant model operations in the refinement modules are
shown in Fig. 2.8.
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Figure 2.8: Network module operations. The sparse 3x3 3D and encoder-decoder
convolutions in the pixel-to-vertex matching refinement are illustrated.

2.3.3 Implementation Details

Our model is implemented in PyTorch, trained and tested on an NVIDIA RTX3090
graphics card.
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Network Related Choices

Following the existing sophisticated network layer block definitions in [26, 58], we first
define a layer block as the combination of either a parameterized operation (e.g., a con-
volutional layer or a fully-connected layer) with a batch normalization layer, or a param-
eterized operation with a batch normalization layer plus an activation, such as ReLU.
We train our network in an end-to-end manner with randomly initialized weights except
that we load the 2D feature extractor, MNasNet from the ImageNet-pretrained check-
points [59]. We adopt trilinear interpolation for refining both displaced depth predictions
and anchored features, and nearest-neighbor interpolation for upsampling features to the
next stage in the coarse-to-fine hierarchy. At each stage, we use Sigmoid activation to
fuse the GRU hidden state and current state to create output coherent feature from GRU.

Hyperparameter Design

At the fine stage, the output truncation distance of our predicted TSDF value is set as 12
centimeters. We empirically set the optimizer as Adam without weight decay [60], with an
initial learning rate of 0.001, which goes through 3 halves throughout the training. The
first momentum and second momentum are set to 0.9 and 0.999, respectively. For key
frame selection, following [16, 52], we set thresholds 𝜃𝑘𝑒𝑦, 𝑡𝑘𝑒𝑦 and fragment input number
𝑁𝑘 as 15 degrees, 0.1 meters, and 9, respectively. A fraction of FPN [26] is adopted as
the 2D backbone with its classifier as MNasNet [61]. MinkowskiEngine [62] is utilized as
the sparse 3D tensor library.

Loss Design

Our model is trained in an end-to-end fashion except for the pre-trained 2D backbone.
Since our target is to learn the 3D geometry and semantic segmentation of the surrounding
scene given the posed images input, we regress the TSDF value with the mean absolute
error (MAE) loss, classify the occupancy value with the binary cross-entropy (BCE) loss
and the semantic labeling with cross-entropy (CE) loss as:

ℒ3𝐷 =
4

∑
𝑠=2

𝛼𝑠ℒMAE(𝑇𝑠, ̂𝑇𝑠) + 𝜆𝛼𝑠ℒBCE(𝑂𝑠, 𝑂̂𝑠)

+ 𝛽𝑠ℒCE(𝑆𝑠, ̂𝑆𝑠) , (2.17)
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where 𝑇 , 𝑆, and 𝑂 denote TSDF value, semantic labeling, and occupancy predictions.
𝛼𝑠, 𝛽𝑠, and 𝜆 are the weighting coefficients in different stages for TSDF volume, semantic
volume, and positive weight for BCE loss, respectively. We set 𝛼 = {1, 0.8, 0.64} while
scaling down 𝛽 = {0.1, 0.08, 0.064} to balance the semantic volume learning with TSDF
volume learning. 𝛾 and 𝜇 is set as 0.5 and 0.1 for each 𝑠 for the same reason. By doing
so, the learning process stays most sensitive and relevant to the supervisory signals in the
coarse stage which has the greatest receptive fields, and less fluctuating as the 3D features
become finer with the upsampling, after log-transforming the predicted and ground-truth
TSDF value following [30].

To conduct cross-dimensional refinements, we regress the depth estimation with MAE
loss and classify the 2D semantic segmentation with CE loss:

ℒ2𝐷 =ℒMAE(𝑑𝑖𝑛𝑖𝑡, 𝐷̂𝑖𝑛𝑖𝑡) + ℒCE(𝑆2𝐷
2 , ̂𝑆2𝐷

2 )

+
4

∑
𝑠=2

𝛾𝑠ℒMAE(𝐷𝑠, 𝐷̂𝑠) , (2.18)

where 𝐷 and 𝛾𝑠 denote depth and the weighting coefficient for depth estimation in different
stages. We further wrap the losses into an overall loss ℒ = ℒ3𝐷 + 𝜇ℒ2𝐷, where 𝜇 is the
coefficient to balance the joint learning of 2D and 3D.
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Table 2.1: Quantitative 3D reconstruction results on ScanNet
Method Acc. ↓ Comp. ↓ Prec. ↑ Recall ↑ F-Score ↑

Atlas [30] 0.124 0.074 0.382 0.711 0.499
NeuralRecon [16] 0.073 0.106 0.450 0.609 0.516

3DVNet [33] 0.051 0.075 0.715 0.625 0.665
SimpleRecon [49] 0.061 0.055 0.686 0.658 0.671

VoRTX [31] 0.089 0.092 0.618 0.589 0.603
Ours 0.068 0.062 0.609 0.616 0.612

Table 2.2: Quantitative 3D voxel semantic segmentation and overall 3D perception results
on ScanNet

Method FPS ↑ KFPS ↑ FLOPF ↓ mIoU ↑ 𝜂3𝐷 ↑
3DMV [36] 7.04 N/A 65.06G 44.2 N/A
BPNet [40] 4.46 N/A 141.06G 74.9 N/A
Atlas [30] 66.3 N/A 267.04G 34.0 11.25

NeuralRecon [16] + Semantics-Heads 228 30.9 42.38G 27.9 32.82
VoRTX [31] + Semantic-Heads 119 13.5 150.23G 13.2 9.47

Ours 158 21.4 90.62G 39.1 37.81

2.4 Experiments

2.4.1 Datasets and Metrics

We conduct the experiments on two indoor scene datasets, ScanNet (v2) [63] and Sce-
neNN [64]. The model is trained on the ScanNet train set, tested and reported on the
ScanNet test set and further verified on SceneNN data set. To quantify the 3D recon-
struction and 3D semantic segmentation capability of our method, we use the standard
metrics defined in Appendix 2.5, following [16, 30]. Completeness Distance (Comp.), Ac-
curacy Distance (Acc.), Precision, Recall, and F-score, are used for 3D reconstruction,
while mean Intersection over Union (mIoU) is used for 3D semantic segmentation.

To evaluate how much robustness a model can achieve while targeting 3D perception
tasks in real time, we define the 3D perception efficiency metric 𝜂3𝐷 = FPS × mIoU ×
F-score, since F-score is regarded as the most suitable 3D metric for evaluating 3D recon-
struction quality by considering Precision and Recall at the same time [16, 30, 49]. It is
noteworthy that for fairness across methods, FPS for processing speed is measured in the
inference across all captured frames in a given video sequence rather than key frames only,
since the input is the same for different methods regardless of their key frame selection
scheme.
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2.4.2 Evaluation Results and Discussion

3D Perception

To evaluate the 3D perception capability, we mainly compare our methods against state-
of-the-art works in two categories: volumetric 3D reconstruction and voxelized 3D seman-
tic segmentation methods.

For 3D reconstruction capability, we compare our proposed method with the canonical
volumetric methods [16, 30] and several state-of-the-art 3D reconstruction methods with
posed images input [33, 49]. Fig. 2.9 demonstrates the superiority of our method in terms
of 3D reconstruction by showing the 3D meshing results in normal mapping. Table 2.1
shows that our method outperforms two main baseline methods in terms of 3D meshing
accuracy. Our method is superior to two main baselines, Atlas and NeuralRecon, and as
competitive as other prior arts on 3D reconstruction. We further compare both state-
of-the-art depth estimation methods and volumetric methods in depth metrics in the
supplement to justify from the depth extraction perspective.

It is noteworthy that Atlas [30] compared their post-processed ground truth using
TSDF fusion to create a new mesh from ground-truth depths, sometimes leading to im-
plausible performance, e.g., on Recall. We avoid this issue by staying with the vanilla
ground-truth meshes themselves for evaluation.

For 3D semantic segmentation quality, we compare Atlas, NeuralRecon with semantic
heads, and VoRTX with semantic heads with our methods in Table 2.2. In the upper
part, two representative state-of-the-art methods for semantic segmentation whose input
requires either depth or 3D mesh, respectively. No key-frame selection and F-score are
involved due to their input modality. In the lower part, RGB-input-only volumetric
methods. Key-frame FPS (KFPS) is measured with the same selection scheme across
all methods. FLOPF is measured with PyTorch operation counter across operations of
neural network’s learnable modules.

We augment three stages of MLP heads on top of the flattened 3D features to predict
the semantic segmentation for both baselines. Due to its lack of 3D feature extraction,
SimpleRecon, as one of the state-of-the-art baselines, is intrinsically incapable of follow-
ing this modification for semantics as well as being combined with our proposed cross-
dimensional refinement techniques. We evaluate mIoU by creating the confusion matrix
as suggested in the official ScanNet [63] evaluation script. To achieve a better protocol for
comparison, the ground-truth mesh needed to be directly used to generate point clouds
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Ground
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Ours Atlas

NeuralRecon+

Semantic-Heads

Method Acc. ↓ Comp. ↓ FPS ↑ F-Score ↑ mIoU ↑ 𝜂3D ↑
Atlas [30] 0.074 0.164 54.7 0.499 31.4 8.57

NeuralRecon [16] + Semantic-Heads 0.138 0.216 178 0.510 15.9 14.43
Ours 0.068 0.143 121 0.611 36.7 27.09

Figure 2.11: Qualitative and quantitative 3D pereception results on SceneNN
dataset. Our method is proven to be generalized to SceneNN without pre-training on
the SceneNN train set.

and conduct a point-wise comparison, rather than unnecessary post-processing. Table 2.2
shows that our method outperforms these two baselines.

Besides mIoU for semantic segmentation, we include FPS and 𝜂3𝐷 for 3D perception
efficiency in the comparison. We also include two state-of-the-art 3D semantic segmenta-
tion methods, 3DMV [36] and BP-Net [40]. It shows that our method can achieve mIoU
results nearly comparable to 3DMV but with only RGB images as input. Overall, our
method achieves the best 3D semantic segmentation performance and the highest 3D per-
ception efficiency among all the volumetric methods. Fig. 2.10 and Fig. 2.11 illustrate
the 3D semantic labeling results. We found that the semantic information generation on
VoRTX is unsatisfying, mostly caused by its bias on geometric features brought by the
projective occupancy mentioned in [31].

Efficiency

Since our main goal is to achieve real-time processing performance while solving 3D per-
ception tasks, we compare the computational efficiency of our model against other RGB-
input-only volumetric methods in Table 2.2. The 3D perception efficiency metric 𝜂3𝐷

for several 3D semantic segmentation works are shown there. We employ FPS, which is
commonly used to measure efficiency for 2D-input 3D perception methods [16, 30, 31], as
a metric to bring out and emphasize the nature of real-time systems. We also include the
floating-point operations per frame (FLOPF) to compare the learnable parameters’ oper-
ations across different methods. The superiority in 𝜂3𝐷 of our method manifests that it
has better deployment potential for real-life 3D perception applications. From the human
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Table 2.3: Ablation study

GRU Input Depth Semantics F-Score↑ mIoU↑ FPS ↑ 𝜂3𝐷 ↑DE AR SE PVR
Neucon + Sem. Geo. 0.516 27.9 228 32.82

(a) Geo. ! ! ! ! 0.477 31.7 190 28.73
(b) Geo.+ Sem. ! ! 0.479 27.1 232 30.12
(c) Geo.+ Sem. ! ! ! 0.482 34.5 169 28.10
(d) Geo.+ Sem. ! ! ! 0.556 26.8 226 33.68
(e) Geo.+ Sem. ! ! ! ! 0.612 39.1 158 37.81

user’s and robotic SLAM’s points of view, our method greatly surpasses the threshold of
being real-time, 90.17 FPS, as elaborated in Appendix 3.2. It shows that our method is
more suitable for real-time industrial scenarios with input data from low-cost portable
devices compared to baseline methods.

2.4.3 Ablation Study

To analyze the effectiveness of cross-dimensional refinement, we present 3D perception
efficiency 𝜂3𝐷 and its components of with different modifications in Table 2.3, where DE,
AR, SE, and PVR denote depth estimation, anchored refinement, 2D semantics estima-
tion, and point-to-vertex refinement, respectively. We assess our method by removing
each of the proposed feature fusion techniques on ScanNet. In other experiments above,
we adopt (e) as our method.

Binomial GRU Fusion

In (a), we remove the back-projected semantics input to GRU in the pipeline. Compared
with (e), both F-score and mIoU of the removal degrade since no hidden semantic in-
formation from last FBV is fused with GRU anymore. Although FPS increases due to
fewer computations, the efficiency 𝜂3𝐷 is worse. Compared with NeuralRecon + Seman-
tic Heads, the semantic loss in (a) is more converged by higher mIoU, but it cannot get
the anchor occupancy learned well with a high F-score mostly because of the increasing
recall but too low precision (high recall is better for having high mIoU). Therefore, we
are motivated to push both 2D RGB and semantic features to GRU such that the GRU
weights are more generalized.
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Depth Refinement

In (c), we remove the depth anchor refinement in the pipeline. The loss in F-score and
mIoU manifests that the geometric feature without depth anchor refinement becomes in-
ferior, which means depth anchor refinement can improve 3D reconstruction performance.

Semantic Refinement

We validate the semantic refinement in the pipeline by removing this module and, as
shown in (d). The mIoU drops due to the insufficient learning information from semantic
heads only. This result demonstrates the effectiveness of our semantic refinement scheme
based on pixel-to-vertex matching for improving 3D semantic segmentation performance.
We also experiment with no refinements but depth and 2D semantics learning setup in
(b), which gives the highest FPS but not satisfying 3D perception performance.

2.5 3D Perception Evaluation Metrics

Table 2.4: Definitions of metrics
Metrics

L1 mean𝑡∗<1|𝑡 − 𝑡∗|
Acc. mean𝑝∈𝑃 (min𝑝∗∈𝑃 ∗ ||𝑝 − 𝑝∗||)
Comp. mean𝑝∗∈𝑃 ∗(min𝑝∈𝑃 ||𝑝 − 𝑝∗||)
Prec. mean𝑝∈𝑃 (min𝑝∗∈𝑃 ∗ ||𝑝 − 𝑝∗|| < .05)
Recall mean𝑝∗∈𝑃 ∗(min𝑝∈𝑃 ||𝑝 − 𝑝∗|| < .05)
F-Score 2×Prec.×Recall

Prec.+Recall
mIoU 1

C𝑠𝑒𝑚
∑C𝑠𝑒𝑚

𝑖=0
𝑣𝑖𝑖

∑𝐶𝑠𝑒𝑚
𝑗=0 𝑣𝑖𝑗+∑𝐶𝑠𝑒𝑚

𝑗=0 𝑣𝑗𝑖−𝑣𝑖𝑖

Annotation: 𝑛 is the number of pixels with both valid ground truth and predictions. 𝑑
and 𝑑∗ are the predicted and ground truth depths. 𝑡 and 𝑡∗ are the predicted and ground
truth TSDFs while 𝑝 and 𝑝∗ are the predicted and ground truth point clouds. 𝑣𝑖𝑗 is the
number of vertices of category 𝑖 out of C𝑠𝑒𝑚 categories that are predicted to be of category
𝑗.

2.6 Conclusion

In this section, we proposed a lightweight volumetric method, CDRNet, that leverages the
2D latent information about depths and semantics as the feature refinement to handle
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3D reconstruction and semantic segmentation tasks effectively. To answer the research
questions about the mimicking and surpassing of human visual perception raised at
the very beginning of this section, we illustrated that our proposed method for 3D visual
perception could achieve good performance and relatively high efficiency, which indicates
that it is feasible for machines to not only mimic humans’ 3D perception system with
solely visual input, but also surpass it with solely monocular input thanks to our recurrent
memory modules.

We further demonstrated that our method has real-time 3D perception capabilities,
and justified the significance of utilizing 2D prior knowledge when solving 3D perception
tasks. Extensive experiments on various datasets justify the 3D perception performance
improvement of our method compared to prior arts. From the application point of view,
the scalability of CDRNet supports the notion that 2D priors should not be disregarded
in 3D perception tasks and opens up new avenues for achieving real-time 3D perception
using input data from readily accessible portable devices such as smartphones and tablets.
It also paves the way for developing solutions that are capable of prevailing over human
visual perception in the future.
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3
Real-Time 3D Perception with Data

Streaming

“It would be very hard to picture any next generation intelligent robots without any on-board

visual sensors. The level of intelligence of the future robots will be very much determined by

how well the on-board computer processes information collected from the visual sensors.”
— Yi Ma, A Differential Geometric Approach to Computer Vision

In this chapter, we develop a real-time 3D perception system based on the CDRNet
algorithm proposed in 2.3. Thanks to MAP optimization, we can achieve optimial metric-
semantic reconstruction results. However, it is noteworthy that our method is different
with bayesian inference in many aspects which happens to be highly relying on the prior
knowledge as well.

3.1 Related Work

The prosperity of deep learning hardwares enables both inference and training at the
edge [27, 28], thus it consolidates the foundation to deploy more and more learning-based
3D perception techniques in real time. KinectFusion [8] first brought in the concept of
handling 3D reconstruction tasks in real time with commodity RGB-D sensors. Han et
al. [13] presented a real-time 3D meshing and semantic labeling system similar to our
work, however, depth measurements from RGB-D sensors are required as input in their
work. Pham et al. [65] built up 3D meshes with voxel hashing, and then fuse the initial
semantic labeling with super-voxel clustering and a high-order conditional random field
(CRF) to improve labeling coherence. Menini et al. [41] extended RoutedFusion [21]
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by merging semantic estimation in its TSDF extraction scheme for each incoming depth-
semantics pair. NeuralRecon [16] adopted sparse 3D convolutions and the gated recurrent
unit (GRU) to achieve a real-time 3D reconstruction on cellphones, without the capability
of semantic deduction. For depth estimation and semantic segmentation, there are also
works achieving real-time processing capability [38, 39, 52, 65].

In addition to the SDF based and voxel hashing methods that mentioned above,
NeRF [66] is one of most popular paradigms nowadays that takes position and polar
rotation as a 5D input to construct an MLP for 3D reconstruction. The output of NeRF is
a 4D vector that represents the three channel color in RGB and one channel transparency
for the input pose. With such a structure, NeRF is originally designed for novel view
synthesis but can also be adpated to 3D reconstruction and perception by feeding the 3D
space’s grid input and some adaptation, respectively. NeRF achieves impressive fidelity
after a lot of iterations. However, due to the lack of representation capability, the 3D
mesh/point clouds generated from NeRF tends to have foggy artifacts given a relatively
large number of computations. To this end, there are research works such as NeuS [67]
that explored to combine the advantages of both by using the same 5D input to infer
SDF in an end-to-end manner. Predictably, the even larger MLP network in Neus is even
slower and cannot be acceptable for the real-time embodied AI application.

3.2 Requirements of Being Real-Time

With a handheld monocular-camera cellphone as the input source, we assume the average
human pace as 1.4 m/s. Given the length of each fragment is 96 voxels in CDRNet and
voxel size is 4 cm, we can calculate the maximum update time for CDRNet one fragment
is 𝑇update = 96×0.04 m

1.4 m/s = 2.743 s. As tested out in multiple trials of our experiments,
the total latency under Wi-Fi data transmission and RTMP streaming on the server is
around 2 s. Thus, the processed time that can be accepted for one fragment computing
of CDRNet is 𝑇proc = 𝑇update − 2 s = 0.743 s. On average, each fragment entertains 67
frames (as 𝑁𝑘 = 9 with key-frame selection), which makes the FPS of the according 𝑇proc

as FPSreal-time = 67Frames
0.743 s = 90.17.

In summary, the 3D perception system must meet the following specifications to pro-
vide real-time 3D metric-semantic reconstruction mapping service to the robotic agent.

1. Runtime speed over 90.17 FPS, which directly affects the latency to be less than
0.743 second.
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Figure 3.1: The pipeline of real-time 3D perception with CDRNet. RGB frames
and camera transform matrices are extracted utilizing the camera and IMU on the cell-
phone via the ARKit interfaces and RTMP server, respectively.

2. GRAM size needs to be reasonably small, perferably lower than 1GB for a typical
200 square feet conference room.

3.3 Real-Time 3D Perception with Data Streaming

In Fig. 3.1, we present the progressive 3D perception system that is capable of real-time
interaction with a monocular camera on the cellphone. The sender-to-receiver imple-
mentation flow is listed out modularly. We chose ARKit [68] on the iOS platform to
synchronize the RGB, camera intrinsics, and camera pose recordings, meanwhile, there
is also a counterpart in the Android platform named ARCore [69]. After the input frag-
ment is recorded on the cellphone, each fragment input is passed to CDRNet thanks to the
RTMP server, and the semantic mesh inference within the current FBV can be achieved
readily. They are passed to the CDRNet model for real-time 3D perception.

3.3.1 Video and Pose Recording on the Cellphone

On the cellphone side, we are using an iPhone 11 with an RGB camera only for data
capturing. HaishinKit for iOS [70] is used for recorded video control on ARKit [68]
session to record the repective camera pose and intrinsics for frames.
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3.3.2 RTMP for Video Streaming

Real-Time Messaging Protocol (RTMP), originally developed by Adobe, is one of the live
streaming protocols that provides TCP-based video streaming services between devices to
ensure persistent connections and low-latency communication. We adopt the one that is
provided with the front-end proxy and HTTP server, Nginx-RTMP [71], which is hosted
as a docker image by a lightweight open-source web proxy server, Nginx.

3.3.3 Incremental Data Receiving and Synchronization

To incrementally takes data, we use Librtmp [72] on the server side to subscribe to the
streamed video and direct subscription on a pose recorder while the synchronization is
done through timestamp comparison. The output synchronized posed video will be used
for the incremental 3D perception.

Therefore, CDRNet can be regarded as a real-time method by achieving 158 FPS as
shown in Table 2.2, whereas the other baseline, Atlas, fails to achieve FPSreal-time to be
in real time.

3.4 Differentiation between MAP Optimization in our

CDRNet and Gaussian Process

As mentioned in Sec. 2.3.2, we do MAP optimization during the training time in CDRNet.
Therefore as shown in Fig. 2.4, we are able to achieve optimial learning results across
all 𝜃. Such a resulting model is used in the real-time 3D perception system for the best
perceptual performance and efficiency.

However, in the Gaussian process (GP) regression, the bayesian inference needs to
be done at the runtime, i.e. for each inference batch the prior will be calculated and
adopted additionally. Together with MAP inference, these methods are typically used in
robotic perception, and should be differentiated with our proposed MAP-optimization-
based approach.

GP regression assumes that the estimated quantity is in a gaussian distribution with
regard to the input variables, or the embeddings that extracted from the input by learnable
networks. The intuition of GP in this case is to ultize the prior knowledge which is
normally Gaussian during the estimation, but from a completely different perspective.
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Normally, a physical similarity is involved. Here the covariance of the GP regression of
𝑧𝑗 is set as a kernel function that measures the similarity between to input frame namely
𝜅(𝑀(𝑡), 𝑀(𝑡′)), as shown in Eq. 3.1. A typical GP regression with a encoder-decoder
structure works as follows.

𝑧𝑗(𝑡) ∼ 𝒢𝒫(0, 𝜅(𝑀(𝑡), 𝑀(𝑡′))) , (3.1)

𝑧𝑗(𝑡𝑖) = 𝑦𝑗,𝑖 + 𝜖𝑗,𝑖 , 𝜖𝑗,𝑖 ∼ 𝑁(0, 𝜎2) . (3.2)

Consider posed depth maps where the depths are either measured from LiDAR sen-
sor [43], or inferred from images multi-view stereo with a cost volume [73] as the input to
the GP regression. At the time frame 𝑡, the encoder takes the depth 𝐷𝑡 extract a learned
intermediate representation 𝑦𝑡. The pose similarity between two frames is encoded in a
kenerl function 𝜅(𝑀(𝑡), 𝑀(𝑡′)), which will be used in the computation of 𝑦𝑡 to incorporate
pose prior knowledge. Then, the GP priors respective embedding 𝑧𝑡 is constrcuted with
imposed Gaussian noise on 𝑦𝑡 as in Eq. 3.2. Finally, the decoder takes 𝑧𝑡 to output the
estimated quantity, which is SDF in this case. Compared with Sec. 2.3.2, limitation of
doing GP regression is two-fold. Firstly, it lifts a huge burden from both computation
and memory perspectives. Secondly, the Gaussian prior is random during the inference,
which degrades the interpretability and reproductivity of the estimation.
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4
Edge Acceleration for Convolutional

Neural Nets Training

“The end of Dennard scaling meant architects had to find more efficient ways to exploit

parallelism.”
— John L. Hennessy and David A. Patterson, A New Golden Age for Computer Architecture

This chapter covers AI hardware research dedicated to performance improvement de-
spite the diminishing technology gains. A software-hardware co-optimization mindset is
adopted for training neural networks at the edge.

4.1 Introduction

Latency. Privacy. Trust. These are the three primary concerns for designers of internet-
of-things (IoT) edge devices. To achieve low-latency, privacy-ensured, and trustworthy
IoT human-machine interaction, current edge devices need to be sufficiently intelligent
in handling the ubiquitous machine learning and deep learning tasks, and must perform
significant amounts of in-situ processing on the spot [74–78]. In deep learning, deep
convolutional neural networks (DCNNs), as the representative models, require processing
a huge amount of feature data for model training.

To deal with the enormous training data, the cloud server conventionally centralizes
the data from edge devices for large-scale deep learning. However, there are limitations to
centralizing the data for model training. Not all edge applications are Wi-Fi enabled or
can rely on consistent communications or charging. Such communication bandwidth and
energy constraints for ad-hoc neural network applications make it hard for edge devices to
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upload data, especially during the network training. People are also becoming more and
more conservative when it comes to sharing their private data. For instance, to address
privacy concerns, facial recognition data cannot be uploaded to the cloud for training
purposes. These issues have given rise to federated learning [78], which investigates col-
laborative model training and inference attacks and constructs robust DCNN models. In
federated learning, rather than the local data, the client nodes, such as edge devices,
always send the updated models or gradients to the central server, which requires them
to support re-training. However, most federated learning studies [78–80] primarily work
on the encryption and model sharing strategy. Hence, the lack of local model re-training
capability for the underlying hardware remains an issue.

Unfortunately, solving the re-training issue is challenging. With current model training
approaches, both the throughput and the power offered by edge devices are not sufficient
for the federated learning scenario, due to its power constraints. Edge devices and systems-
on-chips (SoCs) for IoT scenarios are normally portable, with power less than 10 W, as
shown in Fig. 4.1.

What is worse, as the computational complexity of the myriad DCNNs is increasing,
the demand for higher throughput is rising drastically. With the slow-down in Moore’s
Law, it has become harder to meet this requirement solely depending on technology
scaling. As shown more concretely in Fig. 1, the computational capability (throughput)
for edge computing can no longer benefit from technology scaling, especially with the 10-
Watt constraint. Hence, the pressure on architects and circuit designers to improve energy
efficiency with elaborate designs of specific accelerator architectures has increased. One of
the significant factors limiting the energy efficiency of accelerators is the excessive external
memory access. To include many epochs until convergence, the model training process
of DCNNs consumes a great amount of energy by accessing off-chip DRAM for each
training sample. M. Horowitz [81] shows that the energy consumption of basic arithmetic
and memory operations in a processor of the 45nm CMOS process is dominated by the
DRAM access, which is more than 200x larger than the average of other operations. In
this case, the power consumption solely brought by the DRAM access is always beyond
the power envelope of typical edge devices such as mobile phones, even in the inference
process. This poses great challenges for the edge devices in training tasks.

With the considerations of reducing the DRAM energy and utilizing sparsity in mind,
the aim of this work is to design an efficient yet effective DCNN training algorithm that
leverages the redundancy of conventional model training such that the energy efficiency
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Figure 4.1: Throughput vs. power for the modern computing landscapes. The
size of each representative device indicates the operation counts for their respective typical
application in Table 1.1.

of the accelerators during training is improved. This paper proposes a novel algorithm-
hardware co-design approach, Efficient Training DCNNs with Gradient Optimizations,
dubbed Efficient-Grad. This approach can reduce the DRAM access while maintaining
high throughput by utilizing sign-symmetric feedback. As we discuss in more detail in
Sec.4.3, the symmetric modulator signal used in the conventional back-propagation-based
training algorithm is replaced by sign-symmetric feedback, for both convolutional and
fully-connected (FC) layers. To eliminate the overhead brought by minor gradients calcu-
lation in the backward phase while preserving the original validation accuracy, the error
gradients generated by the sign-symmetric feedback are further pruned in a stochastic
fashion. As an expansion of our prior work [82], this work has three main contributions,
as follows:

• We propose an effective variant of back propagation (BP) for DCNN training, called
Efficient-Grad. It imposes sign-symmetric fixed feedback as the modulator signals
for error gradients and prunes the error gradients with a stochastic approach. The
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learning capability is maintained by reaching low angles between the modulator
signals prescribed by itself and BP.

• We design and implement a data reuse architecture in a hybrid-dataflow manner to
fully utilize the algorithmic superiority of Efficient-Grad. This architecture exploits
the gradient sparsity and memory access reduction brought by the algorithm, while
maximizing the data reuse. By eliminating the transposed weight matrix fetch-
ing/storing and minor gradients being involved in the backward phase, the energy
efficiency is dramatically increased.

• We design a cycle-accurate co-simulation platform based on two open-source tools
for a fine-grained modeling of the overall energy cost, including external DRAM
consumption.

The remainder of the article is organized as follows. Sec. 4.2 starts with the introduction
of a vanilla BP algorithm without any optimization. Sec. 4.3 provides an overview of
current efforts on both the algorithm and hardware sides to achieve edge training. Sec.
4.4 describes Efficient-Grad, the gradient-optimized training algorithm dedicated to edge
devices. Sec. 4.5 introduces the supporting hardware accelerator designed specifically for
Efficient-Grad. Sec. 4.6 shows the experimental setup and analysis, and Sec. 4.7 presents
the evaluation results. At the end, Sec. 4.8 concludes the article.

4.2 Preliminaries

A typical training algorithm for DCNNs is shown as Algorithm 1 and illustrated in Fig.
4.2. It contains four phases: the Forward Phase, where the model is imposed on the
input to compute activations and get inference results, the Backward Phase, where error
gradients are computed using the next layer’s information, the Weight Gradient Phase,
where the weight gradients are updated relying on the error gradients, and the Weight
Update Phase, where the weights in the model are updated by gradient-descent-based
optimizers. In Fig. 4.2, an example of the computations of the first three phases (but not
the weight update phase) is illustrated, as the first three phases dominate in terms of the
amount of computation in the mini-batch stochastic gradient descent (SGD) setup. For
the forward phase, an RGB image is used to convolve with four different convolutional
filters, whose number of channels is three. Subsequently, each filter produces an output
feature map, constructing a four-channel output feature map as 𝑎𝑙+1. For the backward
phase, the error gradients in layer 𝑙 + 1 will be used to convolve with 180∘ rotated filters
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and generate the error gradients of layer 𝑙 whose channels are matched with the rotated
filters individually. For the weight gradient phase, the weight gradient for each channel
in each filter is simply extracted from the map-wise convolution between feature map 𝑎𝑙

and next layer error gradient 𝛿𝑙+1.
BP [83] and SGD [84] are the canonical algorithms used for DCNN training. They

remain powerful and effective, and, are used in various current artificial intelligence (AI)
systems. Generally, the BP algorithm is an efficient use of the chain rule for generating
gradients, and the SGD algorithm takes the average of the gradients of a mini-batch input
to update the weights. The conventional method of performing BP is illustrated in Fig.
4.2.

Algorithm 1: A Vanilla BP Convolutional Neural Network Training
Input: [𝐼𝑚𝑔1, 𝐼𝑚𝑔2, ..., 𝐼𝑚𝑔𝑁 ]: Input batch with the size of 𝑁 images,
[𝑊1, 𝑊2, ..., 𝑊𝐿]: 𝐿 layers of trainable weights
Output: Trained network for inference
/* Phase 1: Forward */

1 for 𝑙 ← 0 to 𝐿 − 1 do
2 𝑎𝑙+1 = 𝜎(𝑊𝑙+1 ∗ 𝑎𝑙) ;
3 if 𝑙 = 𝐿 − 1 then
4 𝐿𝑜𝑠𝑠 = 𝐶(𝑎𝑙+1, 𝑦)
5 end
6 end
/* Phase 2: Backward */

7 for 𝑙 ← 𝐿 to 1 do
8 if 𝑙 = 𝐿 then
9 𝑒 = 𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑙
= (𝑎𝑙 − 𝑦) ⊙ 𝜎′(𝑎𝑙)

10 else
11 𝛿𝑙 = 𝑊 𝑇

𝑙+1 ∗ 𝛿𝑙+1 ⊙ 𝜎′(𝑎𝑙)
12 end
13 end

/* Phase 3: Weight Gradient and Update */
14 for 𝑙 ← 𝐿 to 1 do
15 Δ𝑊𝑙+1 = 𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑙+1
= 𝑎𝑙 ∗ 𝛿𝑙+1;

16 𝑊𝑙+1 = 𝑆𝐺𝐷(𝑊𝑙+1, Δ𝑊𝑙+1, 𝑙𝑟 = 𝛼, 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝜇)
17 end

Algorithm 1 describes the procedure of a vanilla BP algorithm for DCNN training. A
given learning rate 𝛼 will be used as the coefficient of the weight gradients. Additionally,
the previous updated value is also taken into account by a factor of the momentum 𝜇 to
help accelerate SGD in the target direction and to mitigate oscillations. 𝑁 denotes the
batch size of each training iteration. Practically, we will neither take the whole training
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Figure 4.2: Demonstration of the vanilla back propagation for DCNN training.

data set as batch gradient descent (BGD) nor a single training sample for every weight
update. Consequently, mini-batch SGD, which updates parameters by randomly selecting
a mini-batch 𝑁 of training samples from the training set, is utilized. It better helps the
optimization to escape out of the local minimum compared to BGD.

4.3 Background and Motivation

Before we explain the details of Efficient-Grad, firstly, a comprehensive survey of recent
efforts in network training paradigms will be given. These algorithms explore the possibil-
ity of realizing training at the edge. Next, we will analyze some state-of-the-art hardware
accelerators for DCNN training with their pros and cons. Finally, we will introduce some
common yet effective model compression methods for edge training.

4.3.1 Beyond BP: Modern NN Training

The biological implausibility of the conventional machine learning algorithm, namely,
BP has always inspired researchers to explore the essence of machine learning. In 2016,
Lillicrap et al. [85] at Google Brain proposed feedback alignment (FA), in which the
modulator signal during the backward phase is replaced by a uniform random feedback
matrix, rather than the transpose of the weight matrix as in most vanilla BP algorithms.
A similar approach, called random backpropagation [86] also emerged. The term ”align-
ment” has a two-fold meaning in this context. Firstly, it indicates the fact that the
weights in the forward phase and backward phase maintain a soft alignment to obtain
a learning capability, rather than a precise symmetric connectivity. Secondly, it means
that the angle between the modulator signals from BP and this method drops below 90∘,
which reflects the similarity of the modulator signals and the learning capability to some
extent.

A major drawback of FA that has stopped it from flourishing is its poor performance
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on convolutional networks, which are still the cornerstone of most computer vision ap-
plications. In [85], the authors explain why FA fails on convolutional networks. The
rectified linear unit (ReLU), which most DCNNs employ as the activation layer, tends to
kill the negative side gradient when the asymmetric feedback weight is used for learning.
This effect is especially aggravated by the powerful regularization property inherent in
the convolutional layers.

Despite its limitations, many variants of FA have been proposed to explore better
artificial neural network training. Direct feedback alignment (DFA) [87], which directly
propagates the output error back to each layer, has proved to be as effective as BP
for FC layers. Based on DFA, direct random target projection (DRTP) [88] further
liberates the weight transport and update locking issues during BP by imposing direct
target projection, which enables parallel updating of weights across layers. However, it
only works well for spike-based neural network learning because of the limited learning
capability. The trade-off between learning capability and energy efficiency in the DRTP’s
spiking neural network accelerator [89] makes it ill-suited even for perceptron-based neural
networks, let alone the complex DCNN workloads that we are aiming at in this work.

DFA is also not suitable for DCNN training due to the lack of alignment [90]. Efforts
have been made to address the update locking issue in BP, but they lack generality both
on complex datasets or network types other than FC layers [91, 92], and they all sacrifice
the learning capability to unlock the locking issue in the backward phase. In other words,
these approaches are not suitable for DCNN training due to their defects in validation
accuracy. Liberating such constraints on computation-intensive DCNN accelerators is
impractical since the compute modules inside deal with data layer-wisely. [93] adopts
a binary approach to FA (BFA), but it simply abandons FA learning for convolutional
layers, only tuning on FC layers with FA for a predetermined object tracking purposes.

Research efforts towards efficient DCNN training, which strive to cut down compu-
tations and data movements in BP as much as possible, are now being made. E2-Train
[94] accomplishes data saving by stochastically dropping mini-batches of input data. To
reduce redundant computations, it utilizes recurrent neural network gating cells for crit-
ical layers selection and an empirical gradient selector for gradient sign prediction. On
top of E2-Train, [95] proposes to drop trivial input data with a self-supervised importance
metric, while some channels of error gradients are pruned with yet another importance
score. Meanwhile, [75] further explores how BP-level optimal checkpointing improves the
efficiency, thus enabling training at the edge. These works reveal the huge potential for
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accelerating DCNN training through improving the BP algorithm and implementation
efficiency.

4.3.2 DCNN Inference and Training Accelerators

To support the rapid growth in the use of DCNNs in deep learning, the demand for
dedicated DCNN accelerators to improve throughput with limited power constraints has
risen drastically. In particular, most edge devices need to conform to power constraints of
less than 10 W, as shown in Fig. 4.1. Accordingly, to handle real visual applications using
DCNNs, the energy efficiency (slope in Fig. 4.1) of the edge accelerators for the DCNNs
needs to be sufficiently high. Eyeriss [77] and DianNao [96] are two early approaches
aimed at lowering the required power footprint for processing DCNN workloads by a data
reuse mechanism and parallel operations mapping. Subsequently, various hardware design
efforts have also been presented, such as DaDianNao [97], with a multi-core system to
hold up operands in eDRAM, and ShiDianNao [98], which moves the data sensor closer
to the accelerator itself. Other works, such as [99], have achieved high energy efficiency
for DCNN inference by adopting a mixed precision architecture.

Since DCNNs began to prevail in the era of AI, attempts to deploy DCNN training
at the edge have never stopped. The limitation of the aforementioned works, however, is
that none are well-designed for training. [100] is the groundbreaking work which firstly
introduced DCNN training on an SoC, despite its inefficiency in terms of energy. Because
the sparsity of gradients has made a more profound impact than the sparsity of inference
operands, since the computations for one sample of DCNN training is over two times larger
than the inference, works like [101] have further adapted DianNao to support DCNN
training, while utilizing gradient sparsity by skipping or selectively loading gradients.
Another work, [102], modifies the architecture of Eyeriss and utilizes the sparsity with
a stochastic pruning of gradients to enhance the throughput. The training processor
LNPU [103] employs a mixed-precision training scheme to highly improve the energy
efficiency. However, it still suffers from external DRAM energy consumption by running
the vanilla BP. To solve this issue, previous works [89, 93, 104] have adopted variants of
FA and achieved higher efficiency. However, they focus only on FC layer training, not on
convolutional layers.
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4.3.3 Motivation

The training-specific hardware implementation for the vanilla BP cannot provide satis-
factory energy efficiency due to the prohibitive cost of a large number of parameters and
operands reading from the off-chip DRAMmemory. From the BP algorithmic perspective,
this lack of energy efficiency arises for two reasons.

Firstly, popular mobile DCNN models, such as ResNet [105] and EfficientNet [106],
possess parameters larger than 10MB, whereas the on-chip SRAM in edge devices is
normally limited to less than 1MB due to the cost and power concern of the SRAM
technology. Hence, due to the limited capacity of the on-chip SRAM, parameters need to
be frequently loaded in from the off-chip DRAM. In the backward phase, as shown in Fig.
4.2, the weight kernel matrix is stored in DRAM by a row-wise and channel-wise sequence.
Such an arrangement is for the direct usage of data accessing for both the forward and
weight gradient phases. However, during the backward phase, the weight kernel matrix
needs to be read out in a transposed fashion, which leads to a long processing latency.
Normally, for this end, the whole bank of the target weights in a particular rank will be
read out, causing high DRAM access overhead. To deal with this issue, [107] utilizes a
customized SRAM cell with an additional transistor for bitline and wordline connection,
while [108] rearranges the storage scheme for SRAM. Both of these works reduce latency
by increasing power and area consumption, but do not deal with the dominant part of
the energy consumption, namely, the DRAM access overhead.

Secondly, the error gradient in the backward phase is also stored off-chip due to its
size. Nevertheless, reading all the error gradients on-chip for computation is not necessary
and causes insufficient throughput, along with some redundant data movement. In Sec.
4.4.1, we further explore how to successfully optimize the gradients to suppress this issue.

4.4 Algorithm

Given the prohibitive energy consumption of prior arts, we propose the Efficient-Grad
algorithm with a supporting accelerator dedicated to energy-efficient yet effective DCNN
training. This section first analyzes the FA algorithm specifically for DCNN training.
Then, we introduce our proposed algorithm, Efficient-Grad. The architecture constraints
of Efficient-Grad are described in detail as well.
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4.4.1 Efficient-Grad: Efficient Training DCNNs with Gradient-

Pruned Sign-Symmetric Feedback Alignment

Considering the original FA, the modulator signals in the backward phase of Algorithm
1 are a random feedback matrix 𝐵, which eliminates the usage of a transposed or 180-
degree-rotated weight matrix 𝑊 𝑇 , as shown in Fig. 4.2. Consequently, the error gradient
of the layer 𝑙, 𝛿𝑙, is retrieved by the layer 𝑙 + 1 as

𝛿𝑙 = 𝐵𝑙+1 ∗ 𝛿𝑙+1 ⊙ 𝜎′(𝑎𝑙). (4.1)

Nevertheless, as mentioned in [85], the limitation of FA is that the fixed feedback
cannot be directly imposed on convolutional layers. This is because all the neurons
within a convolutional layer share precisely the same receptive field, and such weight
sharing aggravates the regularization effect of FA and leads to over-regularization. From
our experiments, we observe that in the early training stages, the regularization effect of
FA will often improperly impel the activation into the negative region, which will lead to
dead neurons if a ReLU is applied, and these neurons will be irreversibly eliminated. We
refer to this phenomenon as the ”early-killed-neuron (EKN) effect” of applying a ReLU
with FA. Beyond that, we make a compromise and replace the activation function, 𝜎, as in
[85], with the hyperbolic tangent (Tanh). Fig. 4.3(a) shows the performances of AlexNet
under different training setups, where either FA or a hybrid method which has BP on
convolutional layers and FA on FC layers is utilized. Both FA training and hybrid training
with a ReLU (FA_ReLU and Hybrid_ReLU), suffer from the EKN effect brought by the
ReLU on the FC layers as long as there is asymmetric feedback (modulator signal) under
the FA training scheme. Even if the hybrid method has only FC layers adopting FA, the
training diverges at the early stage. As shown in Fig. 4.3(b), the same training setups
are also tested on MobileNetV2, except for the hybrid case of ReLU on convolutional
layers and Tanh on FC layers due to the lack of FC activation in the network structure
of MobileNetV2. The EKN effect is also observed for MobileNetV2, indicating that with
the deeper and more sophisticated structures, networks whose convolutional layers are
adopting FA suffer from a varying degree of the EKN effect.

To address this limitation of the EKN effect of FA for DCNNs, we mitigate the over-
regularization issue by assigning the fixed random feedback to the symmetric signs of its
corresponding weights. Moreover, to restore the improperly killed neurons in the hidden
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Figure 4.3: The accuracy vs. epochs for varying FA-based training schemes.
In (a) AlexNet and (b) MobileNetV2. Note that for the cases where FA is imposed
on all convolutional layers (i.e., FA and Hybrid in the legend) and ReLU together, the
model loses its generality to the testing data, at the early stage of learning, around 30
epochs. The error bars are one standard deviation for 10 trials around the time-averaged
mean. The strong regularization brought by the convolutional layers, ReLU and FA-based
learning together tends to cancel out the neurons.

layers, we append batch normalization (BN) [109] layers in between, wherever the neurons
tend to be killed. Consequently, the sign-symmetric feedback in the backward phase of
Algorithm 1 can be obtained as:

𝛿𝑙 = 𝑠𝑖𝑔𝑛(𝑊𝑙+1) ⊙ |𝐵𝑙+1| ∗ 𝛿𝑙+1 ⊙ 𝜎′(𝑎𝑙). (4.2)

Additionally, the resulting error gradients in Eq. (4.2) turn out to be small in magni-
tude. We further observe that the error gradients of adopting sign-symmetric FA in the
backward phase of Algorithm 1 is distributed in a long-tailed normal distribution. This
means that the computation brought by Eq. (4.2) can be bypassed as long as its expec-
tation remains unchanged afterwards. Inspired by [102], we propose a stochastic gradient
pruning algorithm based on Eq. (4.2) to reduce these redundant gradient computations.
The main idea is to prune the error gradients prescribed by the sign-symmetric feedback
while maintaining their mathematical expectation.

To keep the expectation unchanged, rather than clamping all the pruned gradients
into zero, it is natural to compensate the values of pruned gradients back to the pruned
threshold. Consider the mathematical expectation of the gradient 𝐸(𝛿𝑙) and that of the
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pruned gradient 𝐸( ̂𝛿𝑙):

𝐸(𝛿𝑙) = 𝛿𝑙𝐾 + 𝛿𝑙𝐽 = 1
𝑛

𝑛

∑
𝑖=1

𝛿𝑙𝑖 , (4.3)

𝐸( ̂𝛿𝑙) = 1
𝑛(

𝐾

∑
𝑘=1

̂𝛿𝑙𝑘 +
𝐽

∑
𝑗=1

̂𝛿𝑙𝑗 )

= 1
𝑛(

𝐾

∑
𝑘=1

𝛿𝑙𝑘 + 𝑃𝑐𝑒𝑖𝑙 ⋅ 𝜏 + (1 − 𝑃𝑐𝑒𝑖𝑙) ⋅ 0)

= 1
𝑛(

𝐾

∑
𝑘=1

𝛿𝑙𝑘 +
𝛿𝑙𝐽

𝜏 ⋅ 𝜏) = 𝐸(𝛿𝑙),

(4.4)

where 𝛿𝑙𝐾 is the subset of 𝛿𝑙 which satisfies 𝛿𝑙𝐾 > 𝜏, and for 𝛿𝑙𝐽 , vice versa. Eq. (4.4)
requires the rounding-up ratio 𝑃𝑐𝑒𝑖𝑙 to be 𝛿𝑙𝐽 /𝜏 to keep the expectation unchanged, where
𝑃𝑐𝑒𝑖𝑙 is achieved by comparing 𝛿𝑙𝑖 with a uniformly distributed variable 𝑟 as follows:

̂𝛿𝑙𝑖 =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝛿𝑙𝑖 if |𝛿𝑙𝑖| > 𝜏,

𝜏 ⊙ 𝑠𝑖𝑔𝑛(𝛿𝑙𝑖) if 𝜏 ≥ |𝛿𝑙𝑖| ≥ 𝑟𝜏

0 otherwise,

, 𝑟 ∈ [0, 1], (4.5)

where 𝑟 is a uniform random number ranging from 0 to 1. Note that Eq. (4.5) is applied on
top of Eq. (4.2) and we need to ensure that the angles of the error gradients with Efficient-
Grad are well under 90∘. Since the error gradients are pruned with the expectation that
remains, the sign-symmetric feedback remains unchanged. Thus it is still causing the
weight to be aligned with the random fixed feedback, as analyzed in [85]. As discussed in
Sec. 4.4.2, the lower the angle between error gradients the better the learning capability.
Compared to the original FA, the sign-symmetric FA with stochastic gradient pruning can
even reach an angle under 45∘. The angles of the 300 epochs’ training on ResNet-18 [105]
are shown in Fig. 4.4, and discussed in Sec. 4.4.2. The FC classifier layers stay aligned
with the random feedback because the over-regularization is suppressed in FC layers,
whereas in the convolutional layers, it drops rapidly but tends to be stable. This makes
sense because the BN layer solves the neuron-turning-off problems mentioned above and
restores the internal covariate shift layer-wisely.

One of the critical parts of the Efficient-Grad algorithm is to determine a dynamic
pruning threshold 𝜏 that will preserve the original validation accuracy that a given DNN
model can reach. Consider the cumulative density function (CDF) Φ of a given 𝛿𝑙. If we
use a pruning rate 𝛾 to control the gradient sparsity, i.e., make the expected pruned ratio

53



out of the whole error gradient distribution of every pass in the backward phase 𝛾, then
Eq. (4.6) holds:

𝛾 = 1 − [1 − Φ( 𝜏
𝜎 )] × 2 = 2Φ( 𝜏

𝜎 ) − 1, (4.6)

𝜏 = Φ−1(1 + 𝛾
2 ) ⋅ 𝜎. (4.7)

With Eq. (4.7), the ideal ratio of 𝛿𝑙, which was stochastically pruned in Eq. (4.5), is set as
𝛾 by manipulating 𝜏. The expectation of 𝛿𝑙 in Efficient-Grad is almost unchanged, leading
to a negligible classification accuracy loss. Originally, in Algorithm 1, the backward phase
requires the transposed weight matrix and the dense gradients matrix for computation,
which causes an excessive energy cost and latency for edge devices. With Eq. (4.2) and
Eq. (4.5) implemented on the supporting hardware accelerator, these two issues can be
avoided by utilizing the low-cost feedback and the gradients sparsity to discard backward
operations, for both the current layer and the upcoming layer. The details of the hardware
design are discussed in Sec. 4.5.

4.4.2 Angle Analysis

To further avoid the EKN effect of FA on convolutional layers, we bring in a BN layer
[109] to alleviate the regularization effect brought by the convolutional kernel, random
feedback modulator signals, and ReLU activation function. As discussed in Sec. 4.3.1, the
angle between modulator signals prescribed by FA and that prescribed by BP, indicates
the learning capability of FA to some extent [85]. In FA, the training starts with the
angle around 90∘. This orthogonality embodies the irrelevance between the modulator
signals from BP and those from FA. As learning goes through many epochs, the angle
soon shrinks, and the learning capability of FA is observed to be of the same level as that
of BP. As for Efficient-Grad, the sign-concordance is imposed on the feedback weights
as shown in Eq. (4.2). We measure the angles, 𝜃, of the modulator signals pair when
training with ResNet-18 on CIFAR-10 in Efficient-Grad. These angles are shown in Fig.
4.4 as

𝜃 = cos−1(
[𝑠𝑖𝑔𝑛(𝑊𝑙+1) ⊙ |𝐵𝑙+1| ∗ 𝛿𝑙+1]⊤(𝑊 ⊤ ∗ 𝛿𝑙+1)

‖𝑠𝑖𝑔𝑛(𝑊𝑙+1) ⊙ |𝐵𝑙+1| ∗ 𝛿𝑙+1‖ ⋅ ‖𝑊 ⊤ ∗ 𝛿𝑙+1‖
), (4.8)

where 𝛿𝑧𝑒𝑟𝑜 denotes the ratio of zero gradients out of the whole error gradient distribution.
Initially, the angles of both convolutional layers and FC layers start at around 90∘

before learning. As the training proceeds, with increasing epochs, the angles of all layers
shrink, especially the last two layers, FC6 and Conv5b. For 𝛾 over 90%, all the modulator
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Figure 4.4: The angle of each layer. In ResNet-18 between the modulator signal
prescribed by BP and by Efficient-Grad, respectively.

signals’ angles, except for those of the last three layers, require longer epochs to decrease,
and hence cause a low validation accuracy, as shown in Fig. 4.4. The shrinkage of angles
with 𝛾 ≤ 90% across all layers in ResNet-18 also supports the effectiveness of the Efficient-
Grad algorithm for DCNN training. We adopt 𝛾 = 80% as the pruning rate setup for the
optimal accuracy-sparsity trade-off.

4.5 Hardware Architecture

To enhance the energy efficiency of edge devices which are dedicated to the DCNN training
task, we design an architecture that leverages the sparsity and memory access reduction
brought by Efficient-Grad. This section describes and analyzes this supporting hardware
architecture design. The baseline computing accelerator is inspired by Google’s TPU [110]
with a systolic array. Other components include dedicated compute components for non-
convolution operations, such as activation and downsampling. As shown in Fig. 4.5, a
unified on-chip SRAM buffer for the input feature maps, filter weights, and output feature
maps for both the forward and backward phases are also included. A host processor for
custom RISC-V instructions is utilized to control the accelerator tiling behaviors and
external memory access. Finally, a directed memory access (DMA) module is also used
to connect the on-chip buffers and the DRAM.

In this section, we describe the hardware components in detail. We introduce our
proposed adaptive dataflow on the computing module for higher energy efficiency, as well.
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Figure 4.5: The overall hardware architecture of Efficient-Grad.

4.5.1 Hybrid-WS-OS Dataflow

The goal of the execution stages is to pipeline the operation of the processing element (PE)
cluster for a higher operating frequency. We design the stages to be as fine-grained as
possible, such that the stalls caused by the transition of the output feature map are mini-
mized and the operand reuse can be maximized once it is read into the on-chip buffer. [77]
proposed a well-recognized taxonomy for different types of dataflows, with their pros and
cons. These dataflows, based on a systolic array, are superior to broadcasting operands
with adder trees [93, 96] for convolutional and FC multiplication in terms of data reuse.
Hence accelerators with these dataflows tend to have better energy efficiency. However,
training different DCNNs normally requires different computation schemes, in which dif-
ferent loop tiling strategies are required, and none of the dataflows in the taxonomy can
outperform the others in all DCNNs. It is, thus, hard to assign only one fixed dataflow to
meet criteria such as maximizing input and weights reuse and minimizing output partial
sum movement at the same time.

To deal with this issue, we design our dataflow in a hybrid manner, specifically, a
combination of dataflows which are both weight stationary (WS) and output stationary
(OS) with mode switching, depending on the target training workload model which it
is handling. Even though, as in Gemmini [111], the synthesis results of a systolic array
with a WS dataflow are slightly more energy and area efficient than those with an OS
dataflow, we still adopt OS in our PE cluster for ResNet-18. With the depth-wise and
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vanilla convolution making up a huge portion of ResNet-18, it dumps the partial sum
more frequently than MobileNet. Thus, running an OS dataflow on ResNet-18 is more
efficient. Compared with other dataflows, OS ones generally have the lowest DRAM
access, which has a strong impact on the overall energy efficiency, as analyzed in [77]. If the
workload DCNN model contains more 1x1 point-wise convolution than ResNet-18, such
as MobileNet, we will use WS in the PE cluster due to its superiority for throughput when
each element in the weight matrix is utilized at a maximum rate during the computation.

4.5.2 Processing Element

A PE is a combination of minimized control units, a multiply-accumulate (MAC) unit,
and the register files for holding up input operands and partial sum aggregation. To
minimize the energy cost brought by the internal data movement, we use the OS dataflow
in the nomenclature of Eyeriss for either standard convolution or depth-wise convolution
in DCNN training. Nevertheless, PE also supports WS for the reasons discussed in Sec.
4.5.1.

Architecture Design

To achieve better performance, power, and area (PPA) characteristics, the PE is designed
in a homogeneous fashion; i.e., each PE is capable of handling all the general matrix
multiplication (GEMM) of these four phases in training. For both the forward phase and
backward phase in Algorithm 1, the convolutional operands read from on-chip buffers are
pushed into the PE via the FIFO ports, while the offset vector is used by the sparsity
utilizer to skip the zero gradient computation. The sparsity utilizer will firstly dissect the
compressed sparse column (CSC) format of the operands in different phases to locate the
desired computation index.

Next, to eliminate the stalls caused by switching tiles in a convolution, we use a set
of ping-pong buffers in each PE to store the preloaded operands and perform MAC at
the same time, as shown in Fig. 4.5. For WS mode, during the preloading stage, the
ping buffer will accept the operands passed in from the preloaded operands input port,
and it will also pass out the operands at the preloaded operands output port at the next
cycle. Meanwhile, the pong buffer will be used for MAC at this stage, with the input
from the northern input port. When it turns to the compute stage, the roles of the ping
buffer and pong buffer will switch, such that the operands from the weight port can be
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reused maximally. The ping-pong buffers will alternately take in a preloaded weight and
reuse it for weight-computing-intensive convolutions, such as 1x1 point-wise convolution.
The partial sum calculated in each cycle will be shipped out in the southern output port.
Meanwhile, the switching mechanism still applies to OS mode, but the weight is taken in
by the northern input port and dumped by the southern output port, while the preloaded
operands input port preloads the partial sum. The ping buffer will accept the preloaded
partial sum and thereafter be used for MAC until the accumulation for the output finishes,
while the pong buffer keeps preloading the next targeted partial sum.

For the backward phase of Efficient-Grad, the PEs simply impose the sign bit from
the global weight buffer on the random fixed magnitude preloaded in the reuse data
scratchpad beforehand, to perform the convolution shown in Phase 2 of Algorithm 1. The
hybrid-WS-OS dataflow still applies.

The on-chip reuse data scratchpad is used to hold the reuse data, such as input, weight,
and random matrix. There is also another partial sum data scratchpad in each PE for
direct output aggregation for all the input channels, which avoids unnecessary partial sum
movement between the global buffer and PE.

Bit-width Setting

To achieve training quantization with decent performance, we follow the quantization
scheme which is adopted by several prior arts [112, 113], by utilizing a dynamic fixed-
point representation whose rounding process is conducted in a stochastic manner for the
output value.

In the forward phase, the inputs 𝑎𝑙 and 𝑊𝑙+1 are in 8 bits, and the partial sum of 𝑎𝑙+1

is in 19 bits for accumulation. The scaling factor, 𝑆𝑊𝑙+1 , for 𝑊𝑙+1 is in 8 bits and fixed
once the convolutional result of 𝑎𝑙+1 is finished. It is used to round 𝑎𝑙+1 back to 8 bits
together with a pseudo random number for stochastic rounding and a dynamic scaling
factor, 𝑆𝑎𝑙+1 , as in the dynamic fixed-point scheme.

For the backward phase, the input 𝛿𝑙+1 and the sign-symmetric feedback ̄𝐵 are in 8
bits, while the partial sum of 𝛿𝑙 is in 19 bits for accumulation. Before being passed to layer
𝑙 − 1, the convolutional result of 𝛿𝑙 is rounded back into 8 bits similarly to the forward
phase. For the weight gradient and update phase, since the gradients in Efficient-Grad
are optimized for the sake of learning efficiency, compared to the vanilla BP, the input 𝛿𝑙

is read in 19 bits before the rounding process happens for 𝛿𝑙.
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Figure 4.6: Backward convolution exemption in Efficient-Grad. The forward phase
and backward phase for a particular layer 𝑙 in ResNet-18. In this example, the feature
map size and weight filter size are 8 and 3, respectively.

Backward Convolution Exemption with CSC Offset

During the forward phase, the offset vector in the CSC of each feature map is computed
and preserved for the usage of Eq. (4.5) in the backward phase. During this phase,
for a specific convolution between 𝛿𝑙+1 and 𝑊 𝑇 , the final sum will be aggregated at the
southernmost PE in the cluster, whose output is sent to the sparsity utilizer residing in a
dedicated compute component (DCC). Normally, the input feature map 𝑎𝑙 is sparse due to
the effect of ReLU activation ahead, and such sparsity can be utilized to discard redundant
convolutions for 𝛿𝑂𝑙 = 𝛿𝑙+1 ⊙ 𝜎′(𝑎𝑙) during the backward phase. Therefore, in this phase,
we use the offset vector in the CSC which we encoded during the forward phase for the
𝑎𝑙 to utilize this sparsity. Thus, the convolutions which generate the gradients that are
about to be canceled by the ReLU are exempted by the zero-element mask of the offset.
Subsequently, the offset vector of the returned 𝛿𝑙 will be independently encoded based
on stochastic gradient pruning. As Eq. (4.5) finishes, the sparsity utilizer will directly
encode the sparse ̂𝛿𝑙𝑖 into the CSC format, namely, the offset vector and the data vector.
Similar to [102], the offset vector indicates which operands need to be calculated. One of
the reasons why we reuse the preloaded weight in the reuse data scratchpad, rather than
feature map data, as shown in the block diagram in Fig. 4.5, is that both the activation
in the forward phase and the output gradient in the backward phase in Algorithm 1, are
sparser than the weights and thus can be processed by the sparsity utilizer whilst reusing
the weights.
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An example in Fig. 4.6 is given to illustrate the usage of the offset vector to eliminate
the convolution in the backward phase. A particular layer, 𝑙, in ResNet-18 with an
8x8 feature map and 3x3 filter weights, conducts the forward phase in the top row and
the backward phase in the bottom row. For the representation of the ReLU activation
gradient, the straight-through estimator (STE) is used. The offset vectors recorded in
𝑎𝑙 of the forward phase together constitute the 𝑀𝑎𝑠𝑘𝑙, which will be used to exempt
the convolutions which generate 𝛿𝑙 in the backward phase. The backward convolution
exemption applies for all the layers in the backward phase to greatly utilize the sparsity
residing in the gradients, together with stochastic gradient pruning.

4.5.3 Systolic-Array-Based PE Cluster

Typically, all the PEs are uniform and fully pipelined. The PE cluster is a 2-D sys-
tolic array that handles both convolutional layers and FC layers. The Efficient-Grad
accelerator contains four PE clusters, which comprise 1024 PEs in total, to provide the
sufficient throughput for DCNN training. Unlike TPU [110], which is fixed in WS mode,
ShiDianNao [98] and [114] in OS mode, and Eyeriss [77] in a tradeoff of both, named row-
stationary (RS) mode, we adopt a hybrid-WS-OS dataflow, as discussed in Sec. 4.5.1,
which is determined depending on the processed layer type on a layer by layer basis.
Such flexibility in dataflows enables higher throughput and better data reuse with fewer
stalls, compared to those approaches with fixed dataflows, as above. As mentioned in Sec.
4.5.2, we use an OS dataflow for better throughput and energy reduction in the ResNet-18
workload, while keeping the interconnect streamlined compared to the network-on-chip
in Eyeriss.

Each PE cluster consists of 256 PEs in a 16x16 array to fully utilize the address vector.
There are shift registers at the northern and western parts of the PE cluster to receive
the input feature maps data and weights. These shift registers orchestrate the matching
between sparse input operands from the western side of the PE cluster, and the weight
from the northern side. When the control unit turns to OS mode, the southern PE receives
the weight from the northern PE, while the eastern PE receives the input feature map
from the western PE.

In the southernmost part of the PE cluster, each southernmost PE is connected to a
DCC, which generates the uniform random numbers, performs activation functions, and
accumulates 𝜏 for use in Eq. (4.5). Fig. 4.5 shows the architecture of the DCC. It contains
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a pseudo-random number generator (PRNG) with a CSC encoder. To cater for the needs
of the random numbers, namely, 𝐵 in Eq. (4.2) and 𝑟𝜏 in Eq. (4.5), a series of seven
linear feedback shift registers (LFSRs) are used as the PRNG. These LFSRs are connected
on top of each column of the PE cluster. In the backward phase, the partial sum of 𝛿𝑙

is aggregated at the southernmost output of the PE cluster and processed by stochastic
pruning with the generated random 𝑟𝜏. Meanwhile, the generated random 𝐵 is passed
towards the northern parts. Inspired by another work [112], which adopts stochastic data
processing as well, we design a seven-LFSR group, each of which is a 19-bit Fibonacci
LFSR whose bitlength is guaranteed to cover one of the weights. Meanwhile, randomness
is guaranteed to be good enough. For each trial in training, we input different seeds from
the seed table which is stored in the input data buffer, and the seeds remain the same
for all iterations. In the seven-LFSR group, each LFSR is tapped by different primitive
polynomial pairs, such that the generated randomness for each one is different from that
of the others.

For each batch in the backward phase, 𝜏 will be pushed into a FIFO, dubbed the
Tau accumulator, to accumulate different 𝜏 at each batch. Once the Tau accumulator is
full, the gradients will be pruned by the average of 𝜏 residing in the Tau accumulator.
Thereafter, the average of all 𝜏 stored in the Tau accumulator will be used in Eq. (4.2),
to eliminate the repetitive threshold calculations on Eq. (4.7) for each batch.

4.5.4 On-Chip Global Buffer, Main Controller, and DCC Con-

troller

For each PE cluster, the global buffer array is split into 19 KB for weights, 16 KB for the
input feature map, and 38 KB for the output feature map. Setting the weight buffer to be
larger is beneficial for more weight reuse during WS mode. This also helps in OS mode
in holding the previous computed partial sum, which is in 19 bits. Each weight buffer
is of 19-bit read/write port width, with 1024 words. Meanwhile, each input data buffer
and accumulation buffer take an 8-bit and 19-bit read/write port width, with 2048 words,
respectively. There are four sets of buffer arrays matching four PE clusters. Together they
form a global buffer array with a size of 292 KB. The weight buffer stores an 8-bit weight
and sign-symmetric feedback for the forward phase and backward phase. Notably, in the
weight gradient and update phase, it stores a 19-bit error gradient. In the backward
phase, the 8-bit random feedback and the corresponding sign will be loaded from the
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DRAM, respectively. Since both the weights and feature maps are distributed around
small positive and negative values, we adopt the sign-magnitude representation to avoid
prohibitive switching activity for their value updates in training. In such a case, during
the backward phase, one bit is valid as the sign bit for one feedback element in the 8-bit
subword of the weight buffer.

During the backward phase, the weight buffer holds the magnitude of the fixed random
feedback of each batch, with the instructions which come from the control unit. These
magnitudes will be pushed into the PE cluster and stored in the reuse data scratchpad
of each PE individually. Therefore, the external DRAM access is minimized by reading
consecutive sign bits of the weight matrix using DMA ports.

The control unit in the accelerator tiles the input and weights of each layer batch-wisely
for data reuse. The CSC format across all the on-chip global buffers helps densify all three
phases in DCNN training. To provide fine-grained loop tiling control and handle efficient
external DRAM data access, we adopt the Rocket core [115] as the host processor. The
DMA module is based on the IceNet network interface controller module from Chipyard
[116], which can be tightly adapted to the Rocket core. We can access the DRAM directly,
bypassing the L2 cache of the Rocket core to read or write to the on-chip SRAM buffer in
a bank size fashion. Both the read DMA interface and write DMA interface are specially
adapted for the selective gradients, because the gradients are pruned and hence non-
consecutive at the initial stage. After the gradients are encoded in CSC format, they turn
consecutive and are thereafter stored in the accumulation buffer and further in DDR4 by
the write DMA interface.

The DCC is used for non-linear activation functions, such as ReLU and Tanh. It also
contains a scaling factor for layer-wise transformation. Sub-sampling such as MaxPooling
and AvgPooling are also considered in this component. The DCC controller takes the
DCC control signals passed from the main controller to configure all DCCs in the PE
cluster. Moreover, it handles the BN layer in an integer fashion, as proposed in [117]. It
realizes the BN function by calculating the mean and variance in the dynamic fixed-point
format, as the output of convolutions is done. For the forward phase, once we finish the
convolution and the output is rounding back to 8 bits, we use it to calculate the mean
and variance on-chip. As for ResNet-18, the parameters amount of the largest BN layer is
1024. In such a case, the storage requirement of accommodating 64-batch-size BN layer
parameters (the mean and variance) is 128KB. Therefore, the BN parameters can be fully
stored on-chip in the accumulation buffer while doing the BN operations, to circumvent
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dumping these BN parameters to off-chip DRAM with higher overhead.
Given the observation that in the transfer learning scenarios where most of the edge-

training tasks are needed for model customization to new features, the moving mean and
variance have converged in the pre-trained model [118], we fix the mean and variance
and only update the 𝛾 and 𝛽 in the backward phase. In such a case, the gradients with
regard to the mean and variance are both zero, and the resulting input gradient of the
BN layer turns to be linearly dependent on the output gradient with the coefficient of the
value of variance. By fixing the mean and variance in the backward phase, we relieve the
computational burden of the backward phase of BN and exclude the complex BN cache
in this design, since the accumulation buffer is capable of buffering the data for BN.

4.6 Experiments

In this section, we introduce the experiment setup for both the algorithm and hard-
ware of Efficient-Grad, as well as the test results on the CIFAR-10 [119] and ImageNet
(ILSVRC2012) [120] datasets with popular benchmark DCNN models. First, synthesized
results of Efficient-Grad are analyzed with algorithm-level testing verification. Second, to
emulate the DRAM access, we adopt a cross-platform, co-simulation methodology, cus-
tomizing two cycle-accurate simulators at different domains. We also prove the superiority
of the Efficient-Grad design.

4.6.1 Algorithm Setup

Considering better convergence stability and on-chip implementation feasibility, an SGD
optimizer is adopted for all the networks on both datasets. For CIFAR-10, the initial
learning rate is set as 0.01, with a step decay of 0.1 over every 70 epochs. We use a
weight decay of 5 × 10−4, and a momentum of 0.9 for the optimizer. Meanwhile, for
ImageNet, the initial learning rate is set as 0.1, with a cosine annealing scheduled decay.
The weight decay is also employed for ImageNet, and set to 1 × 10−4 with a momentum of
0.9. The Efficient-Grad algorithm is tested on an NVIDIA GeForce RTX 3090 GPU card
with PyTorch 1.8, which is a deep learning framework with good compatibility on edge
devices, such as NVIDIA’s mobile GPU, Jetson modules. The high potential of adopting
Efficient-Grad on Jetson modules is discussed in more detail in Sec. 4.7.3.
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4.6.2 RTL Implementation with Chisel Tester Environments

The pervasive object-oriented methodology in software design has started to improve
the productivity of classical hardware descriptive language for digital hardware design.
Among several emerging hardware generating languages [121–123], we use Chisel for the
register transfer language (RTL) development on account of the advances brought by the
scalability of modern software languages. The behavioral simulation of the Efficient-Grad
RTL is done with Chisel Tester [124]. Based on the fork-join property of Chisel Tester,
we are able to build a simulation-based timing model in Scala, to handle the intra-PE
pipeline within the PE cluster. We synthesize the ASIC design using the Synopsys Design
Compiler with a 14nm SMIC FinFET technology. For more accurate power and latency
modeling, the SRAM/RegFile macros are generated by the Synopsys 14nm off-the-shelf
memory compiler rather than a popular yet over-optimistic architecture-level open-source
framework such as CACTI 7.0 [125].

4.6.3 Performance Co-Simulation Platform

To manifest the improvement of the Efficient-Grad algorithm and its hardware support in
terms of energy-efficiency, we customize an open-source cycle-accurate DCNN inference
simulator, SCALE-Sim [126], for sound modeling of the training workload. To adapt the
training, as illustrated in Algorithm 1, both the topology and the data reuse computing
logic of SCALE-Sim are redesigned, particularly for the backward phase. Subsequently,
to better analyze the performance of the dumped traces, both SRAM and DRAM access
traces are dissolved as one trace per line.

After obtaining the cycle-level memory traces of DCNN training, DRAMSim3 [127] is
utilized for DRAM access modeling to estimate the access latency and energy consumption
brought by DRAM traffic. DRAMSim3 is yet another cycle-accurate memory system
simulator which supports trace-based simulations. Intrinsically, it offers the best and most
accurate simulation performance among existing cycle-accurate DRAM simulators [125,
128, 129]. In the modeling of Efficient-Grad, we use a DDR4_8Gb_x8_3200 configuration
with a 1GB size as a DRAM model in DRAMSim3, which provides 64 bytes (8𝑏𝑦𝑡𝑒 ×
8𝑏𝑎𝑛𝑘𝑠) per access. In the memory system wrapper of DRAMSim3, the Efficient-Grad
request is pushed into the transaction queue, where the traces containing commands
(either read or write), address mapping, and clock cycle, are issued together into the
ranks configured by the DRAMSim3 configuration.
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Table 4.1: Evaluation Results for Efficient-Grad’s Algorithm

Model Dataset Baseline (BP) [93] 𝛾 = 90% 𝛾 = 80%
𝑎𝑐𝑐(%) 𝛿𝑧𝑒𝑟𝑜(%) 𝑎𝑐𝑐(%) 𝛿𝑧𝑒𝑟𝑜(%) 𝑎𝑐𝑐(%) 𝛿𝑧𝑒𝑟𝑜(%) 𝑎𝑐𝑐(%) 𝛿𝑧𝑒𝑟𝑜(%)

AlexNet CIFAR-10 86.38 14.78 28.45 64.87 78.52 87.20 85.69 73.74
ResNet-18 CIFAR-10 95.56 0 53.66 0 90.05 81.67 93.31 77.84
AlexNet ImageNet 56.38 9.45 7.39 51.34 50.99 88.10 56.26 69.13

ResNet-18 ImageNet 68.73 0 11.41 0 61.26 80.31 65.41 55.46

To estimate the total energy consumption in a training-sample-granularity, we adopt
the equation combining the energy models in [101, 130] as follows:

𝐸𝑛𝑒𝑟𝑔𝑦𝑇 𝑜𝑡𝑎𝑙 = 𝑃 𝑜𝑤𝑒𝑟𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 × 𝐶𝑦𝑐𝑙𝑒𝑠𝑇 𝑜𝑡𝑎𝑙 + 𝑀𝐴𝐷𝑅𝐴𝑀 × 𝐸𝐷𝑅𝐴𝑀 , (4.9)

where 𝑃 𝑜𝑤𝑒𝑟𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 is the total power made up of both the dynamic and leakage power,
𝑀𝐴𝐷𝑅𝐴𝑀 is the total DRAM access of the accelerator, and 𝐸𝐷𝑅𝐴𝑀 is the energy con-
sumption for each DRAM access, generated by DRAMSim3. The accuracy of the simu-
lation results of DRAMSim3 is proven by its validation process, in which the timing is
used against Verilog models.

4.7 Evaluation and Discussion

In this section, we present the overall performance of the Efficient-Grad algorithm and
its supporting hardware accelerator. The performance evaluation with the energy con-
sumption generated during DCNN training is extracted from the in-house cycle-accurate
simulator we built.

4.7.1 Functionality Results

To examine the learning capability and sparsity utilization potential of Efficent-Grad,
we present the average learning statistics for 10 trials in Table 4.1, where 𝑎𝑐𝑐 refers
to validation accuracy of the testing dataset and 𝛿𝑧𝑒𝑟𝑜 refers to the percentage of zero
gradients during the model training. We trained several benchmark DCNN models, such
as AlexNet, MobileNetV2 and ResNet-18, for 300 and 180 epochs on CIFAR-10 and
ImageNet, respectively, to reach the model convergence.

As shown in Fig. 4.4, the learning capability of Efficient-Grad is guaranteed to be the
same as that of BP, as indicated by the convergence of the modulator signals angles when
𝛾 = 80%. Compared to AlexNet, ResNet-18 is equipped with residual blocks with BN
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Figure 4.7: DRAM energy dissection of the vanilla BP and Efficient-Grad. On
ResNet-18 under (a) the forward phase, (b) the vanilla backward phase, and (c) the
Efficient-Grad backward phase.

layers which endow it a better learning capability, even with fewer parameters. However,
due to the scaling effect in each BN layer, the amount of zero gradients for ResNet-18 is
always zero, which leads to redundant computations with BP training, especially when
the magnitudes of the gradients are tiny.

Thus, we perform a grid search on the 𝛾 of Efficient-Grad. Among the various 𝛾, with
𝛾 = 80%, the validation accuracy of Efficient-Grad is maximized for both AlexNet and
ResNet-18 for two mainstream image classification datasets, namely, CIFAR-10 and Im-
ageNet. The performance degradation of Efficient-Grad is below 1% and 3% for AlexNet
and ResNet-18, respectively, on CIFAR-10. We also note that the BFA training adopted
in [93] led to significant training performance loss due to its incompatibility with convo-
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lutional layers, as we discussed in Sec. 4.3.1.
As on CIFAR-10, Efficient-Grad achieves great generality in model training for both

AlexNet and ResNet-18 on ImageNet, with a validation accuracy of 56.26% and 65.41%,
respectively. Among all benchmark networks, the maximum accuracy loss for ImageNet
rises from 2.3% for CIFAR-10 to 3.3%. This increment of the accuracy loss is due to
the increment of the data complexity of ImageNet. Meanwhile, BFA still suffers from
performance degradation on ImageNet for the same reason as on CIFAR-10. Furthermore,
Efficient-Grad attains a gradient sparsity increment of more than 50% for both AlexNet
and ResNet-18 on ImageNet. The gradient sparsity utilization, together with the on-
chip random feedback access in the backward phase, enables the dedicated hardware
architecture to enhance the throughput while maintaining a low total energy cost.

4.7.2 Co-Simulation Results

Fig. 4.7 shows the DRAM energy consumption of both the forward and backward phase
of training ResNet-18 with Efficient-Grad, where the layers with the suffix ”s” hereinafter
are the residual connection. In Fig. 4.7(a), the input feature map and weight are read
from the DRAM into the PE cluster via the activation input port and preloaded operands
input port, respectively, in the forward phase. According to the ResNet-18 topology, the
Conv1 layer will have the highest output feature map write, thus maximizing the weight
reuse, and the same applies for the point-wise convolution with the big input feature map
of Conv3s. For the designed on-chip buffers, as shown in Fig. 4.5, the more the operands
are reused, the less DRAM access is required. In ResNet-18, the subsequent layers are
smaller in feature map size. Thus, for both the input and output feature map, the DRAM
access energy declines as the network goes deeper. In Fig. 4.7(b), the error gradient and
the raw weight will be read in, respectively. As discussed in Sec. 4.3.3, the transpose
demand in the backward phase costs a large amount of energy for conventional BP. In
Fig. 4.7(c), the error gradient and the optimized weight will be respectively read in. With
the help of the Efficient-Grad algorithm, the DRAM access of the backward phase can be
relieved to even lower than that of the forward phase. This is due to the avoidance of the
transpose weight being read in and the effect of error gradient sparsity utilization.

Table 4.2 summarizes the read/write access bytes of the on-chip SRAM for a patch
of the ResNet-18 workload under OS mode, according to the SRAM traces dumped in
our co-simulation platform. In this platform, we retrieve the SRAM traces and further
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Table 4.2: SRAM Read/Write Access Comparison between the Vanilla BP and Efficient-
Grad

Training Phase Total SRAM Access Bytes (Times)
Input Data Buffer / Weight Buffer Read Accumulation Buffer Write

Forward Phase 95.8MB 2.2MB
Vanilla Backward Phase 766.2MB 18.0MB

Efficient-Grad Backward Phase 59.3MB 1.5MB

DRAM traces using SCALE-Sim. The trend of the SRAM access in the table is similar
to that of the DRAM access shown in Fig. 4.7. It shows that Efficient-Grad is superior
also in terms of the SRAM access, thanks to the utilization of the gradient sparsity with
the CSC format and the asymmetric random feedback.

Fig. 4.8 shows the total energy consumption brought by DCNN training on a sam-
ple under BP and Efficient-Grad, respectively. The estimation comes from Eq. (4.9).
Generally, Efficient-Grad increases the overall energy efficiency by more than five times
compared to the vanilla BP. Readers may notice that the Conv5s layer has the highest
efficiency improvement with an around 10-fold diminishment. The reasons are two-fold.
Firstly, the point-wise convolution on a small feature map in Conv5s causes a higher
weight transpose reading for the DRAM in the backward phase. Secondly, with the
stochastic pruning of gradients in Efficient-Grad, the closest layer to the classifier, the FC
layer, tends to have a higher sparsity to utilize due to the slighter regularization effect
brought by sign-symmetric FA. The accuracy of the simulation results of DRAMSim3 is
proven by its validation process, in which the timing is used against Verilog models.

4.7.3 Comparison with Prior Arts

We compare the specifications of the Efficient-Grad accelerator with the state-of-the-
art DCNN mobile training devices. Table 4.3 presents the accuracy, throughput, and
energy efficiency of various devices (works) for edge training, including, Efficient-Grad,
DCNN training accelerators from academia, and the NVIDIA Jetson TX2, a commercial
embedded GPU. A hyphen in Table 4.3 denotes nondisclosure in the context. Of the
academic works, the processor in [93] is the only one that supports ImageNet training.
However, due to its utilization of binary FA, it cannot support convolutional layer training.
The shared exponents bias to successfully exploit the floating-point operations module in
the edge accelerator meeting all the constraints is utilized in [131]. Nevertheless, neither
of these works supports hybrid-WS-OS dataflows, while [114] is based on enhanced OS
mode and [108] is based on multicasting without data reuse. Hence, Efficient-Grad reaches
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Figure 4.8: Overall energy consumption on ResNet-18. Efficient-Grad vs. BP. The
improvement of Efficient-Grad on BP is shown by the black dots.

a higher clock rate and throughput. In addition, with the help of the optimization on
gradients calculation, especially for the backward phase, the overall energy is greatly
decreased. This leads to a satisfactory reduction of power consumption and improvement
of energy efficiency for Efficient-Grad, which has about 3.7x the power efficiency of [114],
and consumes only 56% of the energy consumption for one epoch of AlexNet training.
This energy reduction is achieved by the gradient optimizations discussed in Sec. 4.4,
whose instantiation on ResNet-18 is presented in Fig. 4.7. We also compare the total
energy cost for DCNN training on a one-sample basis in the table, which shows that
Efficient-Grad saves 44% of the training energy cost compared to [114].

The gradient optimization techniques in Efficient-Grad can also be adapted to some
popular mobile GPU platforms such as the Jetson modules. Our ASIC-based prototype
proves the effectiveness and efficiency of the Efficient-Grad. The PyTorch implementation
of the Efficient-Grad algorithm can be adapted to the Jetson modules, ranging from
the Jetson TX2, Jetson Xavier NX, to the Jetson Nano, after PyTorch is installed on-
board. However, a degradation in performance is expected, and careful orchestration of
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Table 4.3: Comparison to Popular DCNN Training Accelerators

Efficient-Grad ISSCC’21 [131] JSSC’20 [114] TCAS-I18 [93] Jetson TX2

Technology 14nm 40nm 65nm 65nm 16nm
Die Area (𝑚𝑚2) 8.90 6.25 10.24 3.52 43.6
Learning Support CONV, FC CONV, FC CONV, FC FC CONV, FC
Sparsity Support YES YES YES YES -

Supply Voltage (𝑉 ) 0.81 0.75 ∼ 1.1 0.63 ∼ 1.0 1.2 5.5 ∼ 19
Maximum Frequency (𝑀𝐻𝑧) 633 180 160 200 1377

PE Bit-precision (𝐵𝑖𝑡) INT8,19,32 FP8, SEB INT8 INT13,16 FP16
On-chip SRAM (𝐵𝑦𝑡𝑒) 420K 293K 364K 119K 1.25M

Power Consumption (𝑚𝑊 ) 169 230 120.5 126 7500
Energy Efficiency (𝑇 𝑂𝑃 𝑆/𝑊 ) 3.83 1.64 1.03 0.41 0.012

Training Energy Cost (𝐽/𝑆𝑎𝑚𝑝𝑙𝑒) 7.67m - 13.7m - 123m
Target DCNN Workload AlexNet/ResNet-18 ResNet-18 VGG16/AlexNet MDNet -

Target Data Set CIFAR-10/ImageNet CIFAR-10 MNIST ImageNet -

dataflow and precision is required to circumvent the limited amount of available RAM.
The application of Efficient-Grad on Jetson modules is thus left for future work.

4.8 Conclusion

In the current article, we present Efficient-Grad, an efficient yet effective substitute for
the vanilla back-propagation-based DCNN training algorithm. It enables us to make full
use of both the elasticity of the weight symmetry problem and the redundancy residing
in the conventional back propagation algorithm. Hence, the sparsity of gradients can
be utilized. Our algorithm is effective for DCNN training since it involves negligible
validation accuracy loss. We also propose and implement a supporting hardware acceler-
ator architecture for validation and evaluation. In addition to the high energy efficiency
Efficient-Grad achieves, it greatly saves external DRAM access costs, and thus the energy
unit cost of training a DCNN is greatly optimized. As demonstrated in the article, our
proposed design increases the throughput by approximately 4.83x and reduces the energy
unit cost by 44%. It consumes 169 mW at 633 MHz with an area cost of 8.90 𝑚𝑚2, which
leads to superior energy efficiency of up to 3.72x that of prior accelerators. Moreover,
it consumes only 43 mJ and 7.67 mJ, respectively, on ResNet-18 and AlexNet for one
sample training, achieving 3.83 TOPS/W energy efficiency.

We believe that Efficient-Grad will be highly beneficial to both DNN practitioners and
computer architects, and it will push forward the realization of edge training.

70



5
Conclusions

“It is said that the darkest hour of the night comes just before the dawn.”

— Thomas Fuller, A Pisgah Sight of Palestine and the Confines Thereof

In this dissertation, we aim to construct a platform that supports 3D visual percep-
tion from both perspective of algorithms and hardware. First, we proposed a sparse 3D
metric-semantic perception algorithm that utilizes prior knowledge from both anchored
occupancy constructed by depth hypothesis and pixel-to-vertex matching correlation to
refine the regression of TSDF and the classification of semantics. Second, we proposed
a real-time streaming system on mobile devices leveraging RTMP to accommodate the
indoor scene 3D metric-semantic reconstruction on the fly. Finally, to further mitigate
the power consumption and computation overhead brought by the 3D perception algo-
rithms, especially in the training time, we proposed a software-hardware co-optimization
scheme that accelerates by pruning the activation gradients and approximating the sign-
symmetric feedback. Future work to this end is two-fold as follows.

3D Visual Perception Algorithm

In the perception pipeline design, there are more priors can be included, e.g., surface
normal priors and Eikonal regularization priors, etc. The temporal correlation embedded
in the metric-semantic GRU of CDRNet can be reformulated into the self-attention due
to the latter’s better generalizability. In addition to SDF that we worked on, there are
also more data structure as 3D representations to explore, such as a voxelized grid, or
point clouds, or radiance field as mentioned in Sec. 3.1. Each of them has their own pros
and cons and to think about how to integrate them to have complementary synergy is
interesting. Particularly, NeRF is too cumbersome and inefficient from the robotic agent
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perspective, hence a faster NeRF with a hash encoding or replace RGBA radiance with
efficient representation such as SDF within the original NeRF work will also be meaningful
to explore.

Although designing a cutting edge 3D perception algorithm is non-trivial, it will only
counts only if the task is done on the robotic platform. Perception algorithms research
that is closely related to robots will have its own niche. For instances, the collision cost
during the agent’s navigation can be penalized to the overall cost function; when the agent
is conducting assigned tasks using semantic estimation, the estimation can be combined
with both 2D prediction and the projection of 3D prediction through an extended kalman
filter.

Approximate Computing at the Edge

There is no GPU on board in the HomeRobot example in Sec. 1.2 as the power consump-
tion and the cost will be too high for an embodied AI agent with domestic purposes. It
means if we want to offload the computations to the agent itself at the edge, the comput-
ing power of the controller hardware needs to be greatly enhanced. More customization
to 3D processing can be done on-chip. For examples, the same occupancy voxel in the
grid can be applied with a data reuse mechanism; the conventional back-projection on
the pose can be substituted by the positional encoding such that a modulo-based sinu-
soidal function can be adopted. Meanwhile, another research direction is to customize the
classical Von Neumann architecture for higher throughput and lower power consumption
with near/in-memory computing, which overcomes the current I/O constraints as we are
hitting the “memory wall” nowadays.

At the end of the day, a robotic agent’s cost nowadays is still prohibitive, e.g., Boston
Dynamics Spot robot costs $200,000 approximately up to now, which is totally unafford-
able for both commodity and massive industrial usage. Nevertheless, the future of this
burgeoning field still looks promising. Think about the evolutions of semiconductors since
the 1950s at Bell Labs, and the internet commercialization since the 1990s. Akin to these,
the availability of the embodied AI industry may take time to be fully accessible to the
general public. It takes time, but as engineers, we believe that the advent day is coming
soon.
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