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Visible Light Positioning Based Robotic Navigation and Mapping
by

Yiru WANG

Department of Electronic and Computer Engineering,

The Hong Kong University of Science and Technology

Abstract

With the growing demand for location-based services such as indoor navigation, robot
control and object tracking, indoor positioning technology has attracted increasing attention
from both academia and industry. For outdoor environments, the Global Positioning System
(GPS) provides real-time positioning services based on satellites and is widely used in airplanes,
automobiles and portable devices. However, it cannot realize efficient positioning in indoor
environments because satellite signals will be extremely attenuated and interrupted by indoor
obstacles. Currently, wireless technologies, including Bluetooth and WiFi, are widely applied
to indoor positioning systems. However, these technologies can only achieve meter-level
accuracy and are potentially vulnerable to malicious activities. Visible light positioning (VLP)
technology can solve these problems, with multiple advantages including centimeter-level
accuracy, compatibility with existing lighting infrastructure, low cost and insusceptibility to
electromagnetic interference. Therefore, VLP systems are very competitive to provide indoor
positioning service. In this thesis, a high-accuracy VLP system is proposed, based on which
robotic navigation and map construction is also achieved. The design and implementation of
the system is divided into three parts.

In the first part, an image sensor-based single-LED VLP system is proposed. The additional

positioning error caused by tilted receiver camera is corrected by the rotation angles estimated
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by the inertial sensors. The proposed VLP system can also provide positioning services even
when an incomplete LED image is captured by the camera.

In the second part, a VLP-based mobile robot experiment platform is built. The proposed
platform consists of two parts: intelligent lighting and image sensor-based VLP light tracking.
Smart LEDs are used as the access points of the VLP system and are modulated with digital
IDs containing the information of the LEDs’ world coordinates. Therefore, the proposed
positioning system is scalable, with no maximum scale limit. The camera mounted on robot
will capture the images of LEDs and use ID recognition algorithm to identify the IDs then get
the position with geometric feature-based image processing algorithm. Based on the proposed
robot positioning and navigation system, a panorama creation method is proposed which can
generate a panorama at any target point using a robot mounted with an ordinary USB camera.

In the final part, an autonomous map construction method using VLP landmarks and
Simultaneous Localization and Mapping (SLAM). A layout map of the environment to be
perceived is calibrated by a robot tracking at least two landmarks mounted in the venue. At the
same time, the robot's position on the occupancy grid map generated by SLAM is recorded. A
map transformation method is then performed to align the orientation of the two maps and to
calibrate the scale of the layout map to agree with that of the sensor map. After the calibration,

the semantic information on the layout map remains and the accuracy is improved.

X1iv



CHAPTER 1 Introduction to VLC Systems

1.1 Introduction to VLC

Due to the rapid growth of the Internet of Things (IoT) and increasing demand for wireless
services, it has become more and more difficult for the limited spectrum resources of radio
frequency (RF) systems to meet the needs of wireless users. For visible light spectrum, about
390 THz of bandwidth is available, while the entire RF spectrum, including microwaves,
consists of 300 GHz of bandwidth [1], as shown in Figure 1.1. Therefore, the visible light
spectrum is about 1300 times the size of the entire RF spectrum [2]. Visible light
communication (VLC) systems utilizing unlicensed light spectrum can serve as an alternative

technology to the existing RF systems in indoor wireless applications.

Frequency
(Hz)
0 400G 300G 400T 790T 30P 30E
Radio- | Micro- | Infra- N Ultra- X- | Gamma
Visible .
waves | waves red violet | rays Rays

Figure 1.1: Spectrum of RF versus visible light.

Different from earlier lighting facilities, LEDs are capable of achieving high-speed response
to light intensity modulation (IM). By encoding data in the emitted light, LEDs can be utilized
as access points in VLC systems to transmit information at a high speed [3]. If the modulation
frequency is higher than the flicker fusion threshold [4], the human eyes will not observe the
changing light intensity levels, and LEDs can transmit data and maintain the illumination
quality at the same time. Furthermore, LEDs can provide long-lifetime, low-power, high-
brightness and stable illumination services with a wide band light beam, leading to its
increasing demand of employment for general lighting in commercial and residential scenarios
[3]. Therefore, VLC systems have multiple advantages by using LEDs as transmitters,
including low cost, high signal-to-noise ratio (SNR), anti-disturbance of electromagnetism and

good confidentiality. As visible light beam cannot penetrate through the walls and most non-



transparent objects in buildings, which is known as the light-of-sight (LOS) property of visible
light beam, VLC signals in different rooms will not interference with each other, and therefore

are independent and private.

1.2 Types of VLC Systems Based on a Receiver

The receivers in VLC systems can be divided into two types: photodiodes (PDs) and image
sensors. Compared with PD-based VLC, image sensor-based VLC, which is also known as
optical camera communication (OCC) [5], is more attractive due to the ubiquity of cameras on

most of today’s mobile devices, such as smartphones and tablets.

1.2.1 High-Data-Rate PD-based VLC Systems

Figure 1.2: A PD-based VLC system.

In a PD-based VLC system as shown in Figure 1.2, the LED-based transmitter is controlled
by a VLC-enabled LED driver to transmit optical waveforms and the PD-based receiver
converts the received optical power to electrical current following the photoelectric effect.
Compared with an image sensor-based VLC system, a PD-based system can achieve higher
data rate. Stand-alone photodetectors are capable to achieve throughputs of several gigabits per

second [6]. However, the detection areas of PDs are very small. Therefore, PD-based VLC



systems require precise alignment between LED and PD for signal detection [7], which limits

its application in our daily lives.

1.2.2 Low-Data-Rate Image Sensor-based VLC Systems

When optical waves falls on an image sensor, they are collected by an array of small discrete
cells called pixels. The projected image can thereby be divided into these pixels. The quantum
efficiency of a pixel determines its efficiency of absorbing incident photons and converting
incident photons into charges. Each pixel consists of a PD and an image sensor is composed of

a matrix of multiple PDs.

[
]
]
Image —
Row . Row
[
[
B

=

Time Time

(a) (b)

Figure 1.3: The method of image sensor scanning the image: (a) rolling shutter mode, (b)
global shutter mode.

There are two major methods of image sensors reading out the signal from each pixel, being
the global shutter mode and the rolling shutter mode, as shown in Figure 1.3. An image sensor
working at global shutter mode capture an entire frame all at once. All the pixels on the sensor
are read out at the same time. Most charge-coupled device (CCD) sensors employ global shutter
mode. The “rolling shutter” feature of an image sensor can be used to receive data at a faster
rate. Since there are a huge number of PDs in one image sensor, it is not possible to read out
all the pixels at the same time. Therefore, at a time, only one row or one column in the PD
matrix is read out, where the lines are scanned sequentially. This process of reading the output
of each pixel row by row or column by column is called rolling shutter. Complementary metal—

oxide—semiconductor (CMOS) sensors tend to work at rolling shutter mode. Due to the huge



prevalence of CMOS sensor in modern cameras, rolling shutter has been extensively used in
video and filmmaking. One main drawback of rolling shutter is that it will cause warping when
capturing a moving object, because the camera working in rolling shutter mode is always
exposed in a progressive motion.

It is noteworthy that the CMOS image sensor on any mobile device can receive signals via
VLC. In order to achieve a high resolution, a large amount of PDs have to be placed on one
image sensor. A modern image sensor usually contains up to millions of discrete PDs, which
leads to a low frame rate that the image sensor can achieve. For example, the frame rate of a

conventional image sensor on a smartphone is usually lower than 40 fps [8].

Figure 1.4: An image sensor-based VLC system.

Figure 1.4 shows a VLC system using an image sensor working at rolling shutter mode. The
bright bars captured by the image sensor correspond to the transmitted data 1 and the dark bars
correspond to the transmitted data 0. Then at the receiver side, the CMOS image sensor on the
smart phone captures the pixel from top to bottom [7], extracts the rolling shutter patterns by

image processing and decodes the rolling shutter patterns.



1.3 Applications of VLC Systems

According to application scenarios, VLC technology can be divided into indoor and outdoor
applications. Driven by the success of the Li-Fi concept [9], indoor VLC has attracted more
interest and achieved higher growth. However, due to more crucial environments and strict
constraints, such as regulation, mobility and weather, outdoor VLC has been developed at a

lower speed, but still have achieved significant results.

1.3.1 Indoor VLC Systems

As a part of image sensor-based VLC, screen to camera communication (SCC) can provide
high-reliability and high-flexibility short-range communication services, and therefore has
gained much interest from both industry and academia [10]. SCC systems encode data bits into
images and then display the images on a liquid crystal display (LCD) screen, such as a
smartphone or laptop screen, as shown in Figure 1.5. At the receiver side, the user will use a

camera to record the images and then decode the data blocks.

Figure 1.5: Transceivers of SCC systems.

An SCC system based on 2D color barcode, called COBRA: Color Barcode stReaming for

smArtphones, is proposed in [10]. In a COBRA system, the transmitted data is divided into



consecutive frames. In each frame, the data stream is further divided into hxw data blocks
and modulated by COBRA color code, where h is the column number of the data blocks and
w is the row number of the data blocks. Each block occupies bsxbs pixels, where bs
represents the block size (BS) and is mapped to certain color in the color code modulation
method. Figure 1.6 shows an example frame in a COBRA system encoded in four colors (white,
red, green and blue). Additionally, four corner trackers, which are blocks in black surrounded
by eight blocks in the same color of red, green or blue, are added on the corners of each frame
to help determine the orientation of the captured image at the receiver side. Furthermore, four
timing reference blocks, which are black blocks surrounded by eight white blocks, are added
on the margin of the image and used to determine the location of the color data blocks. Then
all the hxw color data blocks, four corner trackers and four timing reference blocks will form

one image and display at the transmitter screen as shown in Figure 1.6.

K 1 block

h columns
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Figure 1.6: An example for a 2D COBRA barcode.
Unfortunately, due to the broadcast property and visual nature of display screens, SCC
systems are subject to eavesdropping and malicious attack, especially in public venues, such
as supermarkets and shopping malls. This vulnerability has led to a number of recent studies

into the security of SCC systems. A physical security enhancement method for barcode-based



SCC systems was proposed in [11]. It can realize secure communication by manipulating
screen view angles and leveraging user-induced motions. Kaleido precodes the distortion in the
video to prevent unauthorized video recording while maintaining the viewing quality of human
eyes [12]. In [13], three secure communication schemes for SCC systems were proposed and
all three methods require strict synchronization. A color shift-based secret key distribution
scheme was proposed in [14]. A covert SCC system was proposed to embed user data into a
video and realize simultaneous display and communication on the screen in [15]. The system
can only achieve a 107 1-level bit error rate (BER) when the block size is up to 60 px. An
upgraded color barcode scheme for secure transmission in SCC systems was proposed in [16]
to improve the throughput based on an advanced smartphone screen and a camera with high
resolution. A screen camera-based secure short-range communication system was proposed in
[17]. It achieves secure communication links with the aid of the color shift and perspective
distortion characteristics of the SCC channel. Leveraging the color shift property over screen-
to-camera channel, two key distribution methods was proposed in [18].

Furthermore, location-based services have seen incredible expansion in recent years. Indoor
VLC systems can also be used for precise positioning, which is also called visible light

positioning (VLP) and will be detailed in CHAPTER 2.

1.3.2 Outdoor VLC Systems

Existing researches on outdoor VLC systems mainly focus on Intelligent Transportation
Systems (ITS), including vehicle to vehicle (V2V) [19] and vehicle to infrastructure (V2I) [20]
systems. By enabling VLC technology on mobile devices and integrate it with smart street
lighting modules, the high-precision positioning and high-speed data rate performances of VLC
technology and the wide distribution of street lightings can intensely contribute to the
implement of diverse public services. Furthermore, in-vehicle network applications can
leverage VLC-enabled lighting modules and traffic infrastructure to implement Vehicular VLC
[21].

However, outdoor applications face more challenges due to the strong ambient light

disturbance [22] and optical defects in lens. The power of the incident parasitic light can be up
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to 10 mW/cm?, compared to the power of the light containing the information which can be as
low as few uW/cm?. Meteorological phenomena such as rain, snow, fog, and other particles in
the atmosphere scatter and absorb light beams, thereby reducing the quality of VLC signals
[23]. Furthermore, the accumulated dirt or ice over the transceivers of outdoor VLC systems
will obstruct the transmitted signals. These blockages severely affects the reliability, robustness
and transmission distance of outdoor VLC. In addition, ice on the road and pavement leads to
stronger reflections. Addressing and solving these challenges enables VLC technology in

outdoor application and leads to the perspective of fully exploiting the advantages of VLC [22].

1.4 Related Works

Recently, VLC has attracted increasing attention from academia and industry and the
number of research works, including exhaustive surveys, on this topic has grown exponentially
[3]. The very first work that utilized LEDs to provide illumination and communication services
in indoor scenarios as proposed by the scholars from Keio University in Japan in 2000 [24]. In
2003, the Visible Light Communication Consortium (VLCC) was founded in Japan, and VLC
technology for mobile devices and vehicles has been rapidly developed.

In addition, standardization work has been carried out by the Japan Electronics and
Information Technology Industries Association (JEITA) and the IEEE Standards Association
(IEEE-SA). In 2007, VLCC introduced two standards given by the visible light communication
system standard and the visible light ID system standard. Then JEITA accepted these two
standards in the forms of JEITA CP-1221 [26] and CP-1222 [27], respectively. In 2011, IEEE-
SA developed the first IEEE standard for VLC given by IEEE 802.15.7 [25] to define the
physical layer (PHY) and medium access control (MAC) layer design specifications.

At the same time, VLC-enabled infrastructures from companies, such as pureLiFi, Philips,
Oledcomm, have appeared on the market and are deployed in domestic and industrial buildings

[28].



1.5 Thesis Organization

The rest of the thesis is organized as follows. The design of a VLC transmitter system is
discussed in Chapter 2. A universal VLC modulator design is presented that is integrated with
Bluetooth-based wireless connectivity and supports various LED lighting and a wide range of
input power for LED drivers. Chapter 3 describes the use of a smartphone camera as a receiver
and characterizes the performance of the communication link with respect to various types of
lights, colors and smartphone models. Chapter 4 is focused on smart lighting and display
applications of VLC. A smart LED lighting installation and control system is presented,
followed by the implementation of OCC in LCD displays. Chapter 5 describes the
implementation of a high-accuracy indoor positioning system using the transceiver system built
in previous chapters. Finally, Chapter 6 concludes the thesis and gives an overview of future

work.
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CHAPTER 2 Visible Light Positioning Systems

2.1 Positioning Technologies

In outdoor scenario, global positioning system (GPS) is widely used to provide location-
based services. GPS uses satellite as transmitter to acquire the position of airplanes,
automobiles and portable devices. A GPS receiver locate four or more satellites and calculate
the distance to each satellite to infer its own position. GPS calculates the distance by measuring
satellite electronic clock, and determine the location of receivers through triangulation method
[1], based on which only three satellites are needed to estimate the position of a GPS receiver.
However, the result is not accurate due to the error of the clock. The fourth satellite is used to
estimate the related position to the three satellites to reduce the positioning error. Several
studies focused on improving the positioning accuracy of GPS system, such as differential GPS
(DGPS) [2] and GPS roadside integrated precision positioning system (GPSIPPS) [3]. However,
these systems require high-cost receivers.

In more complex indoor environments, GPS can not achieve high-robustness positioning
performance due to multipath propagation, signal blockage and attenuation [4]. Indoor
positioning has become a difficult task, and there is no universal solution for all operations [5].
Radio frequency (RF) sensors can help enhance the positioning performance in indoor scenes.
Under the consideration of the cost of large-scale employment, Wi-Fi, Bluetooth, radio
frequency identification (RFID) are the most common used indoor positioning technologies.
Wi-Fi-based indoor positioning system (IPS) was first proposed by Microsoft Research using
received signal strength (RSS) method [6], which measures the signal strength between the
receiver and multiple access points to estimate the distance using propagation model.
Afterwards, most Wi-Fi-based IPS uses fingerprint method. The fingerprint method is also
based on RSS, but it stores this knowledge in the database and compares it with the known
positions of the receivers. However, it is challenging to achieve high-accuracy positioning

results exclusively due to multipath effect [7].
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iBeacon is a protocol proposed by Apple based on Bluetooth Low Energy (BLE) devices
and aimed to push notifications to nearby visitors via mobile applications when they are
approaching the BLE devices [8]. BLE devices broadcast their identifier (ID) to nearby mobile
devices to achieve position acquiring and tracking. Compared with traditional Bluetooth, BLE
requires lower power consumption, lower cost and less amount of data to be transmitted
periodically.

As a cost-effective item serialization wireless technology, RFID is widely applied in retail
scenarios and RFID-based sensing network focuses on providing location-based cloud services
[9]. RFID reader and RFID tag are two basic components in RFID systems. RFID tags contain
antenna-based transceivers and integrated circuit (IC) for RF signal modulation [10]. RFID
tags are always attached to objects to be located by RFID readers. RFID readers transmit power
to RFID tags, so there is no batteries in a RFID tag. As the signal strength of RFID system is
essentially influenced by noise, multipath effect, and antenna interference, the arrangement of
RFID tags is still a challenging task. Support vector machine (SVM) technology can be applied
to RFID-based IPS to improve the positioning precision [11]. As described above, different
indoor positioning technologies have different features and different applications. The
summary of different RF-based IPSs [12] is given in Table 2.1.

Table 2.1: Summary of RF-based IPS [12].

Technology | Coverage | Accuracy | Scalability Cost Power Consumption
GPS 16 km 6-20 m Low High High
Wi-Fi 35m [-5m Medium Medium High
Bluetooth 10m 1-5m High Low Low
RFID I m 1-2m Medium Low Low

Non-RF technologies can also realize localization, such as magnetic positioning, pedestrian
dead reckoning (PDR) and image-based positioning. A magnetic positioning system usually
measures magnetic field strength from a permanent magnet to a magnetic sensor, which is
usually employed for intelligent industrial applications, such as automobile shift detection,

wheel speed sensing [13]. It has multiple advantages including high reliability, high positioning
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accuracy and low manufacturing cost. A practical magnetic system design must analyze the
influence of stray field, ferromagnetic environment, limited installation space, required
resolution, compensation of manufacturing tolerance, leading to high mathematical challenges
[14].

PDR technology calculates the number of steps based on the built-in sensors of mobile
devices to estimate people’s positions [15]. It can only achieve coarse positioning accuracy
because it is challenging to precisely estimate the exact step size of the pedestrian and heading
direction. The walking mode and step size of the pedestrians are varying and the heading
direction measured by compass is sensitive to around electrical devices. Therefore, other IPS
technologies are applied to PDR-based positioning systems to estimate the accumulated errors,
such as Wi-Fi, Bluetooth, magnetism or acoustics.

Among the above technologies, VLP technology is very competitive in providing indoor
localization services due to its high availability, high bandwidth, low cost and long lifetime.
VLP signals cannot penetrate through walls, ceilings and other obstructions inside buildings.
Thus, different VLP systems will not cause interference to each other and the signals in
different rooms are independent and private. VLP technology provide positioning with
centimeter-level accuracy and illumination for large smart manufactories, high-rise buildings,
densely populated shopping malls and underground environments. It is noteworthy that VLP
systems are scalable especially for multi-floor buildings and can make the two positioning
systems for robots and mobile devices, respectively, share the same map and achieve

positioning on the same map.

2.2 VLP System Configuration
2.2.1 PD-based VLP Systems

The most conventional transceiver in PD-based VLP system consists of one PD as receiver
and multiple LEDs as transmitters. An example of a single PD-based VLP system with four
LEDs as transmitters is illustrated in Figure 2.1. As shown in Figure 2.1, a PD-based receiver

is placed on the receiver plane and four LEDs are mounted on the ceiling. Four LEDs transmit
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different signals given by f;, f,, f;3 and f,. Then at the receiver side, the RSS, the time of

arrival (TOA) or the angle of arrival (AOA) will be measured.
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Figure 2.1: An indoor VLP system based on a single PD and four LEDs.

RSS-based positioning system is easily employed without the need for any complementary
equipment except for a single PD and multiple LEDs. Therefore, it is more cost-effective than
TOA -based VLP systems which require additional devices to estimate time. In a RSS-based
VLP system, the target location can be estimated by the received direct current (DC) signal
strength or the output alternating current (AC) signal strength of the PD. However, both of
these methods have potential shortcomings that received DC signal strength-based systems are
sensitive to DC measurement error caused by ambient light and output AC signal strength-
based systems require perfect transceiver parameters [16]. Many conventional algorithms can
be applied to RSS-based VLP system, including trilateral evaluation [16], fingerprint
perception [17] and proximity [18].

In addition, a time difference of arrival (TDOA)-based VLP system measures the traveling
time of the light wave from the LED-based transmitters to the PD-based receiver. It requires at
least three LEDs to achieve 2D positioning and four LEDs to realize 3D positioning. However,
precise time synchronization between the LEDs and the PDs is a prerequisite, which will
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increase the manufacturing cost of the system. With the help of multiple LEDs modulated with
frequency division multiplexing (FDM) and band pass filter (BPF) applied on the receiver side
[19], a single PD can collect optical signals independently and measure the time difference
between the signals, which facilitates the practical implementation of TDOA-based VLP
system.

An AOA system measures the direction of propagation of the light signal incident on the PD.
In an AOA-based VLP system, the PD-based receiver is surrounded by multiple sector LEDs
with limited field of view (FOV) [20]. The position of the PD can be approximately estimated
using AOA method, when at least two optical signals from different transmitters are received.
By mounting more LEDs in the AOA-based VLP system, higher positioning accuracy can be
achieved. Table 2.2 summaries the features of the PD-based VLP systems using different
positioning methods [12].

Table 2.2: Comparison of different PD-based VLP systems [12].

Positioning Methods | Accuracy | Cost Power Consumption | Multipath Effect
RSS Medium Medium | Low Yes
TDOA High High Low Yes
AOA Medium Low High Yes

2.2.2 Image Sensor-based VLP Systems

A smart phone based-VLP system consists of an LED based transmitter and the image sensor
as receiver. The front-end design of the VLC encoding and decoding is illustrated in Figure 2.2.
The LED is controlled by a VLP enabled LED driver to transmit optical waveforms. Then at
the receiver side, the CMOS image sensor on the smart phone works at rolling shutter mode
and the pixel rows are to be captured from top to bottom [23]. Thus, as long as the data rate of
the LED is modulated higher than the frame rate of the smart phone, the transmitter signals
will be recorded as the rolling shutter patterns on the image sensor. To present straightforwardly,
we assume that the transmitter applies on-off keying (OOK) modulation. Bright and dark bars
correspond to transmitted data 1 and O as illustrated in Figure 2.2(b). The LED is first turned
off, which results in a lower intensity output on the first-column pixels at the receiver camera
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side. Then the LED driver control the LED by switching it to the on state, which will be
recorded as the higher intensity output on the second-column pixels. Therefore, expert
guidance is required when setting up a VLP system. In the proposed VLP system, the receiver
camera works at rolling shutter mode to achieve a higher data rate by reading the PD matrix in
the camera column by column compared with that working at global shutter mode. After
scanning all columns, the image sensor-based receiver will convert all the columns on the
resultant image into binary data. By working at the rolling shutter mode, the image sensor-
based VLP system can achieve multi-kbps throughput. Therefore, rolling shutter processing
can be used to increase the data rate. The image sensor-based receiver decodes the patterns
based on threshold. After adding a preamble and error check sequence, the decoded binary
sequences will consist a data frame with unique ID and then the ID is mapped to a uniform

resource identifier (URI) database and read by the application software [22].
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Figure 2.2: Block diagram of a smart phone based VLC system illustrating (a) transmitter

side and (b) receiver side [22].
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To acquire the position of an object, an image sensor-based VLP system usually relies on an
auxiliary magnetometer to estimate the azimuth angle. In [21], a double image sensors-based
VLP system without angle estimation is proposed, where two equivalent image sensors are
placed horizontally with the same height and trilateral evaluation is applied. However, double
image-sensors-based VLP systems require high cost and additional arrangement. Therefore,

VLP systems based on a single image sensor is widely studied.

2.3 VLP Technology Applications
2.3.1 Location-aware Services

It is easy to get lost for humans in indoor public environments, such as shopping malls,
airports, museums and exhibition centers. Location-aware services will be a precious asset to
lead the way for us to our areas of interest [24]. Since LED lightings are already mounted in
these public areas for illumination, VLP systems can be easily facilitated based on the existing
lighting infrastructures. It is noteworthy that certain adjustment must be added to the original
equipment manufacturers (OEMs) of the LEDs to generate VLC signals. The VLP-enabled
smartphones or other mobile devices can demonstrate the information of the around exhibitions,
the advertisement of nearby stores and guide people to the nearest toilet, elevator or ATM. In a
multi-story building, VLP can even achieve 3D positioning by encoding the 3D locations in
the LEDs. In addition, if certain area is getting overcrowded, especially for pandemic control

under covid-19, VLP systems can help the staffs to regulate the flow of people.

2.3.2 Robotics Navigation and Localization

In recent years, Industry 4.0 is revolutionizing the way manufactories product goods. To
meet the demanding challenge of the Industry 4.0 application requirement, increasing amount
of RFID devices, wireless networks and sensors are integrated in the smart manufacturing and
logistics distribution centers. Mobile robots are also assembled on production lines to realize
manufactory automation. However, the communication reliability is limited due to some
potential problems of indoor wireless communication systems, such as multipath propagation,
shadow effect, signal attenuation and interference [25]. In addition, most of existing industrial
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mobile robots are heavily limited to predetermined and fixed route without the capability of
intelligent positioning and self-navigation.

In intelligent manufactories and industrial logistics centers, VLP technology can be applied
to navigate mobile robots to improve work efficiency when they are controlled to conduct
resource allocation and regulate repository management [26]. Beyond Industry 4.0, Industry
5.0 is projected to extend the capability of multi-robot collaboration and human-machine
cooperation and interaction, as shown in Figure 2.3. In addition, by encoding different LEDs
with different IDs, VLP systems can cover the entire workshop to provide scalable location-
based services and navigate the robots to handle dynamic tasks by rearranging the navigation
paths and destinations for robots. Besides industrial environments, mobile service robots are
also widely used in public places, such as museums, airports, shopping malls and hospitals to

realize information display, path guide, ward patrol and room cleaning.
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Figure 2.3: Diagram of a common indoor VLP system with multiple mobile robot
collaboration and human-robot cooperation under based on ceiling mounted LED lightings.
Nowadays, Simultaneous Localization and Mapping (SLAM) technology has been

considered as the key for robots to achieve autonomous positioning and navigation, which was
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first proposed by John J. Leonard and Hugh F. Durrant-Whyte in 1992 [27]. SLAM is mainly
used to solve the problems of positioning, navigation and map construction when mobile robot
runs in an unknown environment and provides various services, such as food delivery, shopping
guide and bank self-service. Table 2.3 illustrates several key benefits of VLP technology in
mapping, deployment, and robustness when compared with current SLAM-based positioning
methods.

Table 2.3: Advantages of VLP in comparison to SLAM-based positioning systems.

Approach VLP SLAM
Mapping Do not require scanning of venue | Require scanning and survey for
process positioning

Map share Just the building floorplan in BIM | Challenging to share the same map

with lights' location is enough between different robots
Equipment Modulated LED Sophisticated and high-cost sensors
Scalability Global 3D Local 2D/3D
Environment | Not based on features Poor performance in repeatable
dependency feature environment and featureless
area
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CHAPTER 3 High-Accuracy Indoor VLP Systems for Mobile Devices

3.1 Introduction

With the growing demand for location-based services such as indoor navigation, robot
control and object tracking, indoor positioning technology has attracted increasing attention
from both academia and industry. For outdoor environments, the Global Positioning System
(GPS) provides real-time positioning services based on satellites and is widely used in airplanes,
automobiles and portable devices. However, it cannot realize efficient positioning in indoor
environments because satellite signals will be extremely attenuated and interrupted by indoor
obstacles [1]. Currently, wireless technologies, including Bluetooth [2] and WiFi [3], are
widely applied to indoor positioning systems. However, these technologies can only achieve
meter-level accuracy [4] and are potentially vulnerable to malicious activities [5]. Visible light
positioning (VLP) technology can solve these problems, with multiple advantages including
centimeter-level accuracy, compatibility with existing lighting infrastructure, low cost and
insusceptibility to electromagnetic interference. Therefore, VLP systems are very competitive
to provide indoor positioning service.

VLP systems use light emitting diodes (LEDs) as transmitters and have two different types
of receivers, image sensors and photodiodes (PDs). The detection areas of PDs are very small.
Thus, precise alignment between the transmitter and a PD-based receiver is required for signal
detection [6]. Compared with PDs, image sensors are more widely incorporated into mobile
devices, promoting their universal deployment. Additionally, a lot of work has been done on
smartphone camera-based visible light communication (VLC) [7] and robot camera-based
VLC [8]. In an image sensor-based VLP system, the LED-based transmitter is controlled by a
VLC-enabled LED driver to transmit optical waveforms and the CMOS image sensor works in
rolling shutter mode [9]. The receiver decodes the patterns based on a threshold, and the
decoded binary sequences will consist of a data frame with unique identification (ID) and be

mapped to a uniform resource identifier (URI) database [10].
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In this chapter, we propose a tilted receiver camera correction and partially blocked LED
image compensation algorithm to realize high-accuracy positioning for VLP systems. The
proposed positioning method is based on a single LED, and the additional positioning error
caused by tilted receiver is corrected by the rotation angles estimated by the sensors on the
smartphones. Additionally, the LED-based transmitters are modulated with digital IDs
containing the information of the LEDs’ world coordinates. Therefore, the positioning method
is scalable, with no maximum scale limit. For example, in a multi-floor multi-room building,
by encoding the LEDs in different rooms on different floors with different IDs, VLP systems
can provide 3D positioning in the venue. The proposed VLP system can also provide
positioning services even when an incomplete LED image is captured by the camera. Two
different methods are proposed to find the geometric features when only part of the LED curve
is shown on the captured images. With these methods, the robustness of the VLP system is
enhanced. We finally present experiments to verify the effectiveness of the proposed VLP
methods and analyze the performance.

The chapter is organized as follows. Related work is introduced in Section 3.2. The proposed
tilted receiver camera correction method for VLP systems is introduced in Section 3.3. In
Section 3.4, we present the details of the proposed partially blocked LED image compensation
method. Experimental results are provided and analyzed in Section 3.5. Finally, Section 3.6

concludes this chapter.

3.2 Related Works

During recent years, a significant amount of work has been done on VLP systems using
image sensors as receivers. A novel VLP system based on an event-based neuromorphic vision
sensor was proposed in [11]. It achieves positioning error lower than 3 cm when the height
between the LEDs and the event camera is within 1 m. However, it is noteworthy that most of
the existing image sensor-based VLP systems have an assumed prerequisite that the image
sensor must be placed horizontally, i.e., parallel with the ground. However, in realistic scenarios,
smartphones held in the human hand arbitrarily rotate about the x-, y- and z-axes, and rotation

correction methods have to be applied to suppress additional positioning errors induced by the
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tilt angles. A novel sensor fusion method was presented in [12], which proposes to collect the
tilt angle data from the sensors (accelerometer and gyroscope) on a smartphone and suppress
the errors caused by the rotation, and the average positioning error is 4.3 cm. An image sensor
noise degradation mechanism was proposed in [13], and it uses an accelerometer to measure
the tilt angles. The average positioning error is 10 cm when the distance from the LED and the
image sensor is 3.5 m. A machine learning method for tilt angle correction was proposed in
[14]. Because different tilt angles lead to different characteristics of the LED image, it used
neural networks to establish the relationship between the LED image characteristics and the
distance between the receiver and the transmitter and correct the error induced by tilted angles,
and the average positioning error can reach 1.9 cm. However, the VLP methods proposed in
[12-14] use multiple LEDs, which requires the LEDs to be placed at high density. Therefore,
to add less tense requirements to the venue to be perceived, single LED-based VLP system is
considered in this thesis. A single-LED VLP system with a marker on the LED was proposed
in [15], which uses the geometric features of the captured LED images to correct the tilt angles
of the camera. However, the x-y plane average 2D positioning error can reach 17.52 cm. A
sensor-aided single-LED VLP system was proposed in [16], which relies on the geomagnetic
field sensor and accelerometer on a smartphone to estimate the rotation angles, and thereby
reduce the positioning error caused by the rotation. However, it only provided the experimental
results when the camera is placed directly below the LED and the mean positioning error is
about 10 cm when the distance between the LED and the camera is 2.4 m. An orientation
calibration method for a single LED-based VLP system was proposed by [17]. However, its
average positioning error reaches up to 11.2 cm at the experimental scale of 1.8x1.8x1 m3. A
geometric feature-based planes intersection-line scheme was proposed in [18] and it can
achieve the average positioning error of 5.58 cm in the experimental scale of 2.7x1.8x1.45
m3. However, all of the above VLP methods can achieve high precision when a complete LED
image is captured.

A further challenge of VLP systems in practical scenarios is that the cameras are not always

able to capture complete LED images. For example, when a camera is placed on the margin of
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the field of view (FOV), it can only capture an incomplete LED image. Additionally, when
someone is standing below the LED and holding a camera to seek his location, his head
partially blocks the LED light. Similarly, when a robot is controlled to track an object in an
intelligent manufactory, it may move under tables or shelves and the furniture will partly
obstruct the LED light. The resulting incomplete captured LED images will lead to additional
positioning error and degrade the robustness of VLP systems. Furthermore, due to a limited
FOV, a VLP method based on incomplete LED images can achieve positioning on the margin
of the FOV, and can therefore extend the positioning area. By combining a tilted receiver
camera, compensation on incomplete LED images can preserve a stable positioning
performance on the margin of the extended positioning area. A VLP method based on the mean
shift algorithm and unscented Kalman filter was proposed in [19], which enhances the
robustness of the VLP system. The accuracy is maintained even when half of the LED is
blocked. A Camshift algorithm combined with Kalman filter was proposed in [20] to realize
good robustness. However, neither of them considered the positioning error caused by tilted

receiver cameras.

3.3 Arbitrarily Tilted Receiver Camera Correction Method for VLP Systems

The diagram of the proposed single circular LED-based positioning method is given in
Figure 3.1. In the proposed indoor VLP system, the LEDs are modulated with unique digital
IDs containing their own position information, which is stored in a database. The LEDs
broadcast their IDs repeatedly. A user holds a smartphone and the front camera captures images
of a LED periodically. Then two procedures are executed. The first is to decode the rolling
shutter patterns shown on the captured images, find the unique ID of the LED and then obtain
the world coordinates of the LED. The other is to detect the boundary of the LED on the
captured images and then compute the translation matrix of the camera. The system will also
estimate the tilt angles using the sensors on the smartphone and thereby compute the rotation

matrix of the camera. Finally, the world coordinates of the camera will be determined.
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Figure 3.1: The proposed tilted receiver camera correction method for a single-LED-based
VLP system: (1) finding the LED’s world coordinates, (2) computing the camera matrices.

3.3.1 Camera Model and Imaging Geometry
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Figure 3.2: Imaging geometry of a single-LED-based VLP system with a tilted camera.
When an image sensor captures a picture of an object, the 3D world coordinates (Xy,, Yy,

Zyy) of the object are projected to 2D pixel coordinates (u, v), as shown in Figure 3.2. In the
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projection procedure, the world coordinates are firstly converted to camera coordinates (X,
Ye, Zc). Then the 3D camera coordinates are projected to 2D image coordinates (x, y) on the
image plane and finally converted to 2D pixel coordinates (u, v). The proposed VLP system
realizes navigation by establishing a mapping between the world coordinates and
corresponding pixel coordinates.

The camera model describes the mapping from 3D world coordinates to 2D pixel
coordinates and is realized by a multiplication of a 3 X4 intrinsic matrix P;, and a 4x4
extrinsic matrix P,,. The intrinsic matrix describes the camera’s internal parameters, and the

extrinsic matrix describes the camera’s location and direction in the world coordinate system

given by
fx Y Ug 0
Pn=10 f, v, 0|, (-1)
0 0 1 0
R T
Poe=|y 1) (3-2)

where (ug, V) are the pixel coordinates of the principal point, namely, the center of the image,
y is the skew coefficient between the x- and y-axes, often 0, f, is the focal length of the x-
axis in terms of pixels, f, is the focal length of the y-axis in terms of pixels, R is the 3X3
rotation matrix and T is the 3X1 translation matrix. The intrinsic matrix can be obtained via
camera calibration [21]. Using these parameters, the projection mapping from world

coordinates (Xy,, Yy, Zy ) to pixel coordinates (u, v) can be described as

X
u fx v u O w
R T1l|Y,
zlv| =10 vOO[ ]W, (3-3)
o 1l|z,
1 0 0 1 0 1

where z. is the scaling factor.
The translation matrix in (3-2) consists of the translation of the camera on the x-, y- and z-

axes, respectively, given by

X0
3’0]. (3-4)
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The rotation matrix in (3-2) is the multiplication of the three rotation matrices describing

the rotation of the z-, x- and y-axes, respectively, given by

R = Rz(‘Pz)Rx((px)Ry((py)

[cosp, sing, O0][1 O 0
= |sinp, cosp, O [0 cosp,  sing,

0 0 1110 —sing, cosgy (3-5)
[cosp,, 0 sing,
X 10 1 0 )

sing, 0 cosg,

where ¢, is the azimuth angle between the y-axis and true north, ¢, is the pitch angle
describing the rotation about the x-axis and ¢, is the roll angle describing the rotation about

the y-axis, as illustrated in Figure 3.3.

X
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~
--------’
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4

Figure 3.3: Rotation angles of a smartphone along x-, y- and z-axes.

3.3.2 Tilted Receiver Camera Correction Method

When a circular LED is mounted on the ceiling and the image sensor is placed horizontally,
that is, the image plane is parallel with the ground, a circular LED image will be captured.
However, when the image sensor is rotated about the x-, y- or z-axis, an elliptical LED image
will be received. Therefore, LED images captured at the same position may present different
geometric features. Fig. 4 shows four images captured at the same position but with different
rotation angles. When the tilt angle changes, the pixel coordinates of the LED image and the

major and minor axes of the elliptical LED image will also change.
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(a) (b) (c) (d)

Figure 3.4: Images captured at the same position with different rotation angles: (a) ¢, =
0%, @y = 0% (b) @x =15°% ¢, = =9°(c) @x =17°, @, = 3% (d) @ = —20° @y =
—2°.

Since the proposed VLP method is based on smartphone images, we take advantage of the
accelerometer and geomagnetic field sensor on the smartphone [22], to directly and promptly
obtain the tilt angles. The tilt angles are available as the sensor application programming
interface (API) through Android and iOS operating systems for mobile devices. Similarly for
robots, these readings can be acquired from the inertial measurement unit (IMU). Then using

the estimated rotation angles, namely, the pitch angle ¢, roll angle ¢, and azimuth angle

| o €
I I
(a) (b) (c) (d) (e)

Figure 3.5: The image processing procedures of boundary detection: (a) original image, (b)

@, the rotation matrix R given in (3-5) is determined.

binary image, (c) patterns eliminated, (d) detected boundary, (e) detected center in red and

major axis in green.
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To determine the geometric features of the LED image, the system has to detect the elliptical
boundary curve in the captured image and the image processing procedures includes converting
the original image to a binary image, deleting the rolling shutter patterns, detecting the
boundary and estimating the ellipse center and major axis, as illustrated in Figure 3.5. The
original RGB image, as shown in Figure 3.5(a), will firstly be converted to a grayscale image.
Then the Sobel filter is applied to obtain a binary image, as shown in Figure 3.5(b). Since the
rolling shutter patterns containing the unique ID of the captured LED are also detected, the
pixels representing the patterns should be deleted by image processing steps, and the result is
as given in Figure 3.5(c). As illustrated in Figure 3.5(c), a small number of the pixels on the
rolling shutter patterns inside the elliptical boundary may not be deleted after the process.
Additionally, the pixels on the boundary curve may be wrongly eliminated. Therefore, we
further apply opening operation to exclude the pixels inside the LED boundary, and apply
dilation operation to fill the boundary. Then, a complete LED boundary is obtained as
illustrated in Figure 3.5(d).

After finding the elliptical boundary curve, the next step is to determine the geometric
features of the ellipse. Here, we propose a center searching method to find the geometric
features of the detected ellipse, namely, the pixel coordinates of the ellipse center and the
lengths of the major and minor axes. For each pixel in the image, we compute the maximum
distance between the pixel and the ellipse boundary and then find the shortest maximum
distance after searching all the pixels in the picture. The one with the shortest maximum
distance is the center of the ellipse and the shortest distance is the length of semi-major axis.
The detection results of the center and the major axis are illustrated in Figure 3.5(e). To further
determine the minor axis of the ellipse, we draw a line starting from the center and vertical to
the major axis, and find the intersection point of the boundary and the line. Then, the distance

between the intersection point and the center is the semi-minor axis.
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Figure 3.6: The pinhole camera model describing the relationship between the major axis

length of the LED image and the distance between the LED and the camera.

The scaling factor z. in (3-3) and the z-axial translation z, in (3-4) can be calculated
using the pinhole camera model [24]. Since the size of the LED is much smaller than the
distance between the LED and the camera, the projection can be supposed as a weak
perspective projection [15]. It is assumed that the distance between the camera and every point
on the LED is the same. According to the pinhole camera model as illustrated in Fig. 6, the

distance between the camera and the LED d can be obtained by

d =%y (3-6)

a
where d;gp isthe diameter of the LED, f isthe camera focal length and a is the major axis
length of the detected ellipse. If we set the point on the ground directly below the LED as the
origin of the VLP system, that is, the z-axial world coordinate of the LED Zy,, . is equal to
the height of the LED, then the z-axial translation z, and the scaling factor z. can be
determined as

Zo=d = Zy,p» (3-7)

Ze = Zy, ., — d. (3-8)
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3.4 Partially Blocked Led Image Compensation Method for VLP Systems

Figure 3.7: Incomplete LED images caused by a limited FOV, blockage of a human head
and furniture.
As described in Section 3.1, in realistic scenarios the camera may capture incomplete LED
images due to a limited FOV, blockage by a human head or furniture, as shown in Figure 3.7.
Explicitly, when the camera is placed on the margin of the FOV, only part of the LED light can

be captured. Additionally, when someone is standing below the LED lamp and holding a
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smartphone to seek his location, his head partially blocks the LED light. Similarly, when a
robot is controlled to track an object, it may move under tables or shelves, and the furniture
will partially obstruct the LED light. Therefore, we propose to realize positioning using
incomplete LED images and further enhance the robustness of the single-LED-based VLP
system. For LED images with a shadow, it is noteworthy that after detecting the boundary of
the LED image, a step to delete the points not on the ellipse should be added before finding the
geometric features. Otherwise, the curve projected by the shadow will also be detected after
the image processing methods, leading to additional errors in determining the geometric
features. Fig. 8 illustrates the detected shadow curve when the LED light is blocked by a human
head. Here we delete the points on the shadow curve with the aid of the property that the points
wrapped by the shadow curve are black. The first step is to find the midpoint of every two
pixels on the detected curve and then delete the two pixels if the binary value of the midpoint
is 0. After checking every pair of points on the detected curve, only those on the LED elliptical
boundary curve are kept.

Original Image  Detection Result

Figure 3.8: The detected shadow curve caused by human head blockage.

Since the center searching method described in Section 3.3.2 relies on finding the shortest
maximum distance between all the pixels and the ellipse curve to determine the center, it may
give poor performance when the major axis of the elliptical LED boundary is partially blocked
by a shadow. Furthermore, Hough circle detection is widely used to find the radius and center

[23]. However, the generalized Hough transform can only achieve high efficiency when a large
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number of votes dropping in the correct elliptical boundary and then the right boundary can be
directly detected, meaning that the elliptical boundary must contain enough points. Therefore,
the efficiency of the generalized Hough transform relies on the quality and the number of the
input points. Thus, we propose a boundary fitting method to compute the ellipse equation by at
least five points on the incomplete elliptical boundary curve. The implicit equation of an ellipse
is given by
Ax2 + 2Bx,y, + Cy? + 2Dx, + 2Ey, — 1 = 0, (3-9)
where (x,,y,) are the pixel coordinates of the points on the elliptical curve, A, B, C, D and
E are the parameters in the implicit equation to be determined.
After solving for A, B, C, D and E, the pixel coordinates of the ellipse center (Xz¢, Yec)s

the length of the major axis a and the length of the minor axis b can be determined by

__ BE—CD

Yoo =22, (3-10)
BD-AE
Yec = o2, (3-11)
_ Z(Axgc+cygc+23xec3’ec_1)
a= J avcr[a-cyran? i
2 2 —
b = 2\/2(Axec+cyec+23xed’ec ) (3-13)
A+C—/(A-C)?+4B?

3.5 Experiment and Evaluation

We build an experimental platform using a common circular LED luminaire and a Lenovo
Android phone to verify the proposed VLP system, as shown in Figure 3.9. The experimental
parameters and the camera options are summarized in Table 3.1. The experimental area is
divided into a 50 cm X 50 cm grid size and 49 test points are selected. The smartphone is
placed at these points and captures pictures. The tilted angle ranges about the x-, y- and z-axis
are —40° < @, < 40°, —40° < ¢, < 40° and —60° < @, < 60°, respectively. For each
point, the smartphone captures four pictures with different tilt angles and different blocking
ratios to avoid accidental errors and cover all the tilted angle range. Both positioning error and
positioning error rate (PER) performances are measured for comparison. The PER describes

the ratio of the positioning error to the distance given by [16]
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JAXWZ +AYW2 +AZW2

,XW2 +YW2 +ZW2

where (X, Yy, Zy ) are the actual world coordinates of the camera and (AXy,, AYy, AZy)

PER =

« 100%, (3-14)

are the differences between the actual world coordinates and the estimated world coordinates

using the proposed positioning methods.

—>| A Lenovo phone
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Figure 3.9: The experimental setup of the proposed single LED-based VLP system.
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Table 3.1: Experimental Parameters

Horizontal Area 3%3 m?
LED Height 1.86 m
LED Diameter 0.175m
Phone Model Lenovo PB2-690Y
Camera Resolution 1920x1080
ISO 100
Exposure Time E
3000

Tilted Angle Range

—40° < ¢, < 40°

—40° < @, < 40°

_600 S (pz S 600

3.5.1 Performances of the Partially Blocked LED Image Compensation Methods

iCenter Detected |
by Center :
.heau,hmfr Method

i:Center Detected !
:bv Boundary E
:Fitting Method
?Boundan- .............................

(a) (b) (¢)

Figure 3.10: The detection results of center searching method and boundary fitting
method: (a) the original captured LED image, (b) the detection results, (c) the zoomed in
detection results.

Firstly, we compare the detection performances of the proposed center searching method
and boundary fitting method. Figure 3.10 illustrates the estimated centers using the center
searching method and boundary fitting method, respectively. The yellow curve is the detected

curve after eliminating the shadow curve, showing that about 30% of the LED boundary is
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captured. The red point is the ellipse center determined by the center searching method and the

green line is the corresponding major axis. The blue point is the center estimated by the

boundary fitting method and the blue curve is the fitting boundary. Since more than half of the

LED image is blocked and the major axis of the elliptical boundary is not captured, the

detection results of the boundary fitting method are more accurate than those of the center

searching method. Therefore, the boundary fitting method can provide better robustness for the

proposed positioning system.

3.5.2 Performances of the Tilted Receiver Camera Correction and Partially Blocked LED

Image Compensation Methods for a Single-LED VLP System

250

100

Positioning Error (cm)

o)
o

0
0%

~¢No Rotation Correction
-8 RSS-AOA [16]

3~ Center Searching
~#-Boundary Fitting

20% 40% 60% 80% 100%
Captured Area Ratio

Figure 3.11: The comparison of the positioning error performance based on LED images

with different captured area ratios among the two proposed methods, the RSS-AOA method

[16] and positioning without rotation correction.

We measure the positioning error performances of the two proposed methods based on

incomplete LED images and a tilted receiver in an experimental area of 2X2 m

2 and compare

the results with those of the received signal strength and AOA (RSS-AOA) method [16]. The

positioning errors with different captured area ratios of the elliptical LED images are provided
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in Figure 3.11. The captured area ratio is the ratio of the captured LED image area to the full
LED image area. It can be seen from the figure that when no rotation correction is applied, and
even when the full LED image can be captured, the positioning errors are higher than 50 cm.
For the VLP methods with tilted receiver camera correction, the picture is mixed. When the
captured area ratio is between 20% and 40%, that is, only about 20% to 40% of the LED image
is shown, the positioning error of the proposed center searching method and RSS-AOA method
[16] is generally higher than 100 cm. However, the positioning error of the proposed boundary
fitting method is usually lower than 30 cm. This means that the proposed center searching
method and the RSS-AOA method [16] are unable to realize positioning in this case, while the
proposed boundary fitting method is able to provide coarse-precision positioning. When the
captured area ratio is between 40% and 60%, the proposed boundary fitting method performs
much better than the proposed center searching method and the RSS-AOA method [16], and
when more than 60% of the LED image is captured, the performance of both the proposed
center searching method and boundary fitting method is better than that of the RSS-AOA
method [16]. When more than 90% of the LED image is captured, the average positioning
errors of the center searching method and boundary fitting method can achieve 5.7 cm and 3.9
cm, respectively. As mentioned in Section 3.1, the average positioning errors of the circle
geometry method [15], projective geometry method [17] and planes intersection-line method
[18] are 17.52 cm, 11.2 cm and 5.58 cm, respectively. Therefore, in ideal conditions when a
complete LED images is captured, the average positioning error of our proposed center
searching method is comparable to existing image sensor-based VLP methods and the proposed
boundary fitting method is better than the existing methods, whereas the two proposed methods
outperform all the other systems in practical situations when the LED light is partially blocked

or it is on the edge of a captured image.
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Figure 3.12: The comparison of average PERs based on LED images with different
captured area ratios among the two proposed methods and the circle geometry method [15],
RSS-AOA method [16] and projective geometry method [17].

Figure 3.12 illustrates the average PER at different intervals of the captured area ratio. As
shown in the figure, when the captured area ratio is between 20% and 40%, compared with the
proposed center searching method and the RSS-AOA method [16], the proposed boundary
fitting method can achieve the optimal performance, with an average PER of about 20%. When
the captured area ratio is higher than 40%, the average PER of the proposed boundary fitting
method is lower than 4%. Both the proposed center searching and boundary fitting methods
perform much better than the RSS-AOA method [16] when the captured area ratio is higher
than 50%. Additionally, when the captured area ratio is higher than 80%, the two proposed
methods can achieve an average PER lower than 6%. When a complete LED image is captured,
the average PERs of the proposed center searching method and boundary fitting method are
2.73% and 1.87%, respectively, much lower than these of the circle geometry method [15],
projective geometry method [17] and RSS-AOA method [16]. As indicated in [4], the
positioning errors of VLP systems using LEDs are among 10-35 cm in experiments. Therefore,

we aim to achieve an average positioning error lower than 10 cm. Since we verify our proposed
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positioning methods in a 2x2x1.86 m3 space, the expected average PER is aimed to be lower
than 6%. Therefore, our two proposed methods can achieve comparable and even better
positioning performance than existing approaches when a complete LED is captured, and

surpass all the existing methods in combating the performance degradation caused by partially

blocked LED light.
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Figure 3.13: Coverage extension of the proposed center searching method and boundary
fitting method along the margin of FOV.

Due to the limited FOV of the camera, if the smartphone is placed horizontally, the
positioning area is limited to 2X1 m? when the height of the LED is 1.86 m. Since the
proposed methods can still achieve robust positioning when the camera is tilted about the x-,
y- and z-axes and even when an incomplete LED image is captured, our positioning area can
be extended to 3x3 m? at the same height of the LED. Thus, we evaluate the positioning
performances on coverage extension of the two proposed methods in an experimental scale of
3x3x1.86 m® and compare the results with the RSS-AOA method [16]. We fix the tilted
angles of the smartphone as ¢, = 0°, ¢, = £20° and ¢, = 0°, and move the smartphone
along the y-axis in the world coordinate system with the interval of 0.1 m and take four pictures
at the same point. The origin is set on the ground, directly below the LED. Figure 3.13
illustrates the average positioning error at different distances from the origin. When the distance
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from the origin is shorter than 1.2 m, compared with the RSS-AOA method [16], both the
proposed center searching method and boundary fitting method can provide better performance
and effectively reduce the additional error caused by the tilted camera. When the distance from
the origin is longer than 1.2 m, only incomplete LED images can be captured. In this scenario,
the positioning error of the RSS-AOA method [16] goes much higher while the proposed
boundary fitting method can still provide stable positioning service. When the distance is about
1.5 m, namely, on the margin of the area of 3x3 m?, about 20% of the LED can be captured,
the proposed boundary fitting method can still reduce the negative effect of incomplete LED
images and tilted camera. It is noteworthy that the proposed boundary fitting method has better
coverage extension performance, and thereby has less tense requirement on the density of the

LEDs in the venue.

3.6 Summary

In this work, we propose a tilted receiver camera correction and partially blocked LED
image compensation method for indoor VLP systems. The proposed VLP methods do not
require the LEDs to be placed at high density and can eliminate the additional positioning errors
caused by a tilted receiver camera in realistic scenarios. We propose two methods to detect the
geometric features of the captured LED images, and the experimental results show that both
methods perform better than the existing single LED-based VLP methods in ideal scenarios.
Furthermore, the two proposed methods outperform the existing methods and can effectively
suppress the performance degradation when an incomplete LED image is captured. Therefore,
the proposed methods can provide stable positioning services and further improve the

robustness of the VLP system.
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CHAPTER 4 High-Accuracy Indoor VLP System for Robots

4.1 Indoor Positioning for Robots

With the high-speed evolution of wireless technologies and the high demand of mobile
devices, indoor positioning technology has enjoyed expansive development prospects. In the
interior of buildings, densely populated cities and underground environments, traditional
outdoor positioning technologies such as Global Positioning System (GPS) have poor signal
coverage and large positioning errors [1]. Moreover, compared with other radio wave
positioning technologies such as WLAN (wireless LAN/Wi-Fi), radio frequency identification
(RFID), Bluetooth, VLC-enabled positioning technology can theoretically provide higher
positioning accuracy and does not produce any electromagnetic interference [2]. Visible light
positioning (VLP) systems compile the transmitted position information into a modulated
signal and modulate it to the driving current of light emitting diodes (LEDs). When the
positioning terminal enters the illumination area, it will receive and recognize the optical
signals transmitted by the LEDs through a sensor such as a photodiode (PD) or an image sensor,
and resolve the unique identification (ID) information of the LEDs. Then the corresponding
location information is determined in the map database.

With the rapid development of artificial intelligence (AI) technology in recent years, the
impact on the intelligent construction industry has continued to increase, and it has brought
considerable changes in many subdivisions. Industry leaders represented by Country Garden
and Evergrande have deployed a variety of robotic equipment in the new generation of
intelligent construction projects, such as handling building materials, leveling the ground,
building positioning, and so on. However, its level of intelligence is not very high. Although
there is a huge demand for full-cycle inspection and quality assessment of indoor building
quality on the market, there is no product solution that integrates autonomy, sampling,
reconstruction modeling, and data analysis. This is also the point of rapid growth of the industry
in the next 5-10 year. Considering the cost-effectiveness ratio, the model of using autonomous

robots plus intelligent sensing equipment will be more than 5 times higher than that of
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traditional manual labor, and is expected to drive tens of billions of market demand, so the
research and implementation of this system is of great significance. Facing the urgent needs of
the future development of the intelligent construction industry, intelligent robot equipment and
intelligent detection technology have gradually become the most core basic reserve. The degree
of system-level intelligence will directly determine the quality and efficiency of task
completion, and indirectly reflect the difference in production value. Therefore, in order to
solve the bottleneck caused by the above problems to industry applications, this project
proposes a fusion integrated solution based on a mobile robot platform and VLC co-location
technology. VLC technology is used to improve the positioning ability of the mobile robot

platform, so that it has accurate autonomous operation capabilities.

4.2 Related Works

4.2.1 Position Estimation of Robot

In a robot positioning system, there are two types of sensors [3]. One is onboard sensors,
which adhere to the robot body, such as the odometer and IMU. These sensors measure the
robot’s linear and angular velocities and accelerations with a high updating rate, and predict its
position and orientation by previous measurement. An indoor positioning system based on
wheel odometry is proposed in [4] by fusing the readings from an encoder, gyroscope, and
magnetometer using a self-tuning Kalman filter coupled with a gross error recognizer. IMU-
based inertial navigation is an important positioning technique in robot localization as it works
autonomously. They present the benefit of high short-term accuracy and great anti-interference
ability. However, inertial navigation has a major drawback of not able to provide long-term
accurate positioning because of the cumulative positioning error increases over time. In [5],
two IMUs are used to estimate the position, and the positioning performance is improved by
the complementation of the relative relationship. The average positioning accuracy is lower
than 20 cm over short periods of time. However, since the onboard sensors are subject to time-

dependent integral error that increases over time [6], the accumulated error is still inescapable,
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leading to the degradation of positioning accuracy. It will also reduce the level of the autonomy
in various industrial tasks. Therefore, a high-robustness positioning system is needed.

The other type is external sensors, which are separated from the robot body, such as image
sensors and light detection and ranging (LiDAR). These sensors are capable to of measuring
an absolute position with the aid of a fixed global reference in the environment. In [7], a radio-
frequency identification (RFID) reader is mounted on the robot to track its position in the scene
where RFID tags are placed at each intersection of structured environment ways. A Bayesian
filter-based robot positioning system with RFID tag collecting is proposed in [8], and the
average positioning accuracy is about 50 cm. In [9], the robot is equipped with an array of
microphone, and the positioning is achieved using time difference of arrival (TDOA). An
unscented Kalman filter-based position estimation method is proposed in [10], where a
tachometer is mounted on the robot. To increase the positioning accuracy, more sensors, such
as IMUs, are needed. In [11], a biomimetic radar sensor-based positioning system is proposed,
and it can locate a robot with an average accuracy of 35 cm. Another robotic positioning scheme
was based on simultaneous localization and mapping (SLAM) and laser sensors, and was
presented in [12] using Monte Carlo localization and convolutional neural network (CNN)
algorithm. However, the average accuracy is limited 40 cm which is insufficient for robotic
applications.

VLC is a powerful technology for future generations of mobile network well beyond 5G.
Based on LED and VLC technologies, visible light positioning (VLP) can use the LED
lightings to transmit position information. Compared with the above works, VLP can achieve
much better, centimeter-level, positioning accuracy.

According to receiving sensors, VLP technology can be divided into PD-based positioning
and image sensor-based positioning. In [13], the authors proposed and demonstrated a PD-
based VLP system with machine learning technique applied to enhance positioning accuracy.
In image sensor-based VLP systems, image-processing approach is applied at the receivers to
convert the received 2D image into a three-dimensional image. Compared with PD-based VLP

technology, image sensor-based VLP technology is less affected by ambient light, and can
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realize higher positioning accuracy. Moreover, image sensors can be combined with smart
mobile devices such as smartphones to truly implement VLP technology from research lab to
commercial applications.

The consideration of positioning algorithm includes positioning accuracy, real-time and
robustness [14]. However, most existing studies on image sensor-based VLP can only achieve
static positioning and aim at enhancing the positioning accuracy. The method can suppress the
positioning errors caused by rotation and enhance the robustness of image sensor-based VLP
systems. Nowadays, there is an increasing demand for robots to conduct more challenging and
smart tasks, and at the same time the operation environments of robots has become more
complicated. Indoor complex scenarios, such as domestic or industrial workspaces, contain
various blind corners that are hard to detect. These kinds of application and environmental
status will actually influence the positioning accuracy of indoor robotic platforms. Furthermore,
such systems are very demanding and challenging since all the above situations and types of
movement are characterized by high complexity and diversity. Two requisites of indoor robot
positioning systems are real time ability and high accuracy, which will improve the efficiency
of robot work. In [21], a loosely-coupled VLP-inertial fusion method was proposed, to improve
positioning robustness under LED shortage/outage with an inertial measurement unit (IMU)
and rolling shutter camera. However, it is challenging for a robot to locate itself in a complex
and moving scenario only with a single sensor. Therefore, the localization and navigation of
the robot is a challenging problem, and VLP should be the most suitable solution for indoor

mobile robot positioning.

4.2.2 Path Planning Algorithms

In a navigation process, path planning and kinematics control is applied to the robot to reach
a required position. Path planning includes a global planner and a local planner. The objective
of global path planning is to build a feasible path from the starting point of the robot to the goal
set by the controller. Global path planning is based on the static map layer and is updated with
a relatively low frequency, assuming complete knowledge of the obstacles is obtained. By

contrast, local path planning mainly follows the global path and at the same time makes the
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robot avoid the dynamic obstacles detected by the sensors. Therefore, local path planning is
based on the obstacle map layer determined by the data from the sensors on the robot and is
updated with a relatively high frequency, assuming there is still unknown obstacles in the area

to be perceived.

Table 4.1: Comparison between global path planning and local path planning.

Global Path Planning Local Path Planning
Static map-based Sensor-based
Comparatively low update frequency Comparatively high update frequency

Assume perfect knowledge of the area to be | Assume imperfect knowledge of the area to

perceived (static map) be perceived

Determine a beneficial path to the set goal Follow the global path while avoiding

obstacles

Dijkstra’s algorithm is first proposed by a computer scientist called Edsger W. Dijkstra, and
becomes one of the most universal global path planning algorithms [15]. It is capable of
determining the shortest path from one vertex to other vertices. The main idea of Dijestra’s
algorithm is that it starts from the starting point and adopts the strategy of greedy algorithm. It
regards the starting point as the center point and expands outwards layer by layer until it reaches
the destination [16]. As Dijestra’s algorithm uses greedy algorithm, the number of nodes on the
graph determines its speed of computation. The advantage of Dijestra’s algorithm is that it can
solve the optimum shortest path, but it takes longer computation time to search for the shortest
path. A* algorithm is another widely used global path planning algorithm, and is first proposed
by Peter Hart, Nils Nilsson and Bertram Raphael from Stanford Research Institute [17]. It is a
heuristic search algorithm. In other words, it is an algorithm to find the optimal solution using
heuristic function in a finite solution space that can be exhausted. A* algorithm can find the
optimal solution, but highly relies on the heuristic function and has high computational
complexity.

For local path planning, elastic band (EBand) planner has two essential components:

contraction force and repulsion force [18]. Contraction force is used to generate the shortest
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path between the start point and goal point, and repulsion force is aimed to avoid the path from
the obstacles. EBand local planner can determine the shortest path. However, it does not
consider the robot’s kinematics and thereby is sensitive to the acceleration related parameters.
Timed elastic band (TEB) local planner is an extension of EBand planner by decreasing the
trajectory execution time [19]. It can bypass obstacles even when the obstacles are right in front
of the robot. Therefore, it has good performance in dynamic-obstacle avoidance. However, it
requires high computational complexity. Dynamic Window Approach (DWA) local planner
takes robot’s kinematics into consideration and requires relatively low computing power. The
first step of DWA local planner is to discretely samples robot velocity including linear and
angular velocities. Then forward simulation is performed to evaluate each trajectory in terms
of calculating a cost function. The cost function is computed by the sum of the distance between
the planned path and the endpoint of the trajectory, the distance between the local goal and the
endpoint of the trajectory and the maximum obstacle cost along the trajectory. By comparing
the cost function of each trajectory, the best trajectory is determined and the corresponding
velocities are sent to the robot base. The disadvantage of DWA local planner is that it has poor

performance in highly complex and dynamic-obstacle environment.

4.3 VLP-based Mobile Robot Platform

In this chapter, we propose an image sensor-based indoor VLP demonstration based on the
studies on the identification of the LED-ID position information, positioning accuracy, real-
time and robustness. Figure 4.1 describes the hardware and processing flow of the proposed
robotic localization platform. The main contributions are as follows:

1. Design a smart LED system aimed for VLC positioning. VLC modulated LEDs are used
as location beacons to provide location signals that are captured by the camera mounted on the
robot to calculate the three-dimensional position of the robot with cm-level accuracy. Each
smart LED generates a unique ID with a wireless control module. Bluetooth Low Energy (BLE)
SoC is equipped to support iBeacon and VLC data/frequency and implement a wireless control
system for these LEDs. The VLC signal adopts OOK modulation scheme by using designed

data pattern to control the on and off states of a power switch.
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2. Design a VLC high-precision three-dimensional imaging positioning algorithm based on
a single LED. As VLP systems need to consider the accuracy and real-time problem at the same
time, this demonstration proposes a high-precision VLC three-dimensional imaging
localization algorithm based on a single LED.

3. Based on the above algorithms, we build a VLP-based mobile robot experiment platform.
Smart LEDs are used for VLC function. The camera mounted on the robot will capture the
images of LEDs, use ID recognition algorithm to identify the IDs and then get the position with

image-based algorithm.
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Figure 4.1: Diagram illustrating VLC sources used for robotic 3D localization.

4.3.1 Smart LED System for VLP

In the implementation of this demonstration, the whole system consists of two parts:
intelligent lighting and image sensor-based VLC light tracking. Figure 4.2 shows our VLP
platform for a single robot navigation system deployed at our lab (Integrated Circuit Design
Center, 3/F, CYT Building, HKUST). As for the intelligent lighting, we use one smart LED as

the signal source of VLC. To easy install and deploy the transmitter, we use a universal VLC
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modulator to convert existing LED lighting into VLC modulated smart lighting for indoor
positioning [22]. The unique identifiers (UIDs) provided by the LEDs are set as the critical
points and the UIDs are stored in the memory (flash) integrated in BLE SoC [23]. BLE SoC is
the core chip of wireless control module. With the embedded BLE, the lights also support geo-
fencing. To avoid from interruption, we use common serial peripheral interface (SPI) with
direct memory access (DMA) to control the generation of VLC data in BLE SoC. The
frequency of SPI changes along with the sequence of data while DMA works in a repeated
mode. Then all of the stored data are loaded one-off from flash to RAM and used to generate
the control signal to modulate the light of those LEDs by adopting OOK modulation scheme.
Then the data of UIDs can be transmitted without intervention. After the data sequence comes
out from the previously determined I/O pin, it will be pushed out to the gate of NMOS power
switch then control the on and off states. The LEDs are connected in series of the NMOS power
switch and they will repeatedly turn on and turn off following the VLC data pattern. The UIDs
broadcast by LEDs can be detected with the camera working at rolling shutter mode as captured
images. At the receiver side, image processing and VLC decoding algorithm is applied to

recover the embedded digital code from the captured patterns [24].
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Figure 4.2: Demonstration setup of high-precision positioning system based on VLC smart
lighting.
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In this demonstration, we utilized LED panels with the diameter of 17.5cm and they are
mounted on poles with the height of 2.85 m. The BLE SoC we used for wireless control module
is DA14580 QFN40. For the receiver end, we use a camera mounted on the top of the robot to
capture the images of the LEDs and use remote control laptop to process those images and

dealing with tracking algorithm which is the second part of this system.

4.3.2 Real-time Robotic Localization System

In order to realize the image sensor-based VLC light tracking function, the first task is to
obtain the LED-ROI region by using the VLC dynamic positioning tracking detection
algorithm. Secondly, we need to identify the ID position information with the LED-ID
recognition algorithm. Image processing technique is performed to extract the images, based
on which the LED-ID position information is identified. By pre-establishing the LED-ID
database, the machine-learning algorithm is used to perform feature matching on the LED-ID
light stripe code to realize LED-ID identification. Lastly, the LED image-based localization
algorithm is applied for VLP. After accurately identifying the LED-ID, the position coordinate
of the LED is obtained, the position of the terminal relative to the LED in the locating position
area can be obtained by the imaging-positioning algorithm, thereby achieving indoor
positioning [25]. For the image processing (LED-ID feature extraction) procedure, the VLC
tracking detection algorithm is applied and relative coordinate of the camera to the LED is
calculated. The Turtlebot3 robot kit is based on a Raspberry Pi 3B (Quad ARM Cortex-A53
Core 1.2 GHz Broadcom BCM2837 64 bits CPU and 1 GB RAM). The operating system of
the Turtlebot3 robot is Ubuntu 16.04 MATE, and the operating system of the laptop is Ubuntu
18.04 LTS. The ROS release is ROS Melodic.
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Figure 4.3: Experiment results of the proposed robot positioning system: (a) experiment
setup, (b) VLP results when the camera moves on a plane, (¢c) VLP results when the camera

rotates and is partially blocked in 3D space.

Figure 4.3 shows the experiment results of the proposed real-time robotic positioning system.
The gray area in the middle of Figure 4.3(a) is the digital map of the perceiving area (Integrated
Circuit Design Center, 3/F, CYT Building, HKUST). The gray block logo on the map is the
real-time position of the robot. The real-time view of the camera mounted on the robot facing
to the ceiling is shown at left bottom of Figure 4.3(a). The purple dots on the digital map are
the positioning results of moving trace of the robot, which is controlled by the remote laptop.
The terminal on the right top of Figure 4.3(a) shows the linear and angular velocities of the
robot which are controlled by the keyboard. The terminal on the right bottom of Figure 4.3(a)
gives the real-time 3D position of the robot estimated by the proposed single LED-based VLP
system. Figure 4.3(b) shows the positioning results when the camera moves on a plane. The

altitude difference between the plane and the LED is about 0.8 m and the average positioning
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error is about 2 cm. Figure 4.3(c) illustrates the 3D VLP results when the camera has 3D

rotation and is partially blocked in 3D space.

4.4 Application of Robot Positioning and Navigation System: Panorama Creation

Compared with ordinary pictures, panoramas are more vivid and interactive. Using
panoramas to replace ordinary pictures is a rising publicity method in recent years. Panoramas
give an all-round display instead of a single perspective and have been widely used in many
places such as real estates, tourisms, hotels, and KTVs. Panorama can be created by human
holding a 360-degree camera as shown in Figure 4.4. However, human taking pictures with
hand-held cameras may cause camera shake. Furthermore, a 360-degree image has severe
image distortion as shown in Figure 4.4(b). Therefore, we propose to use a robot mounted with
an ordinary USB camera to take images and generate a panorama by rotating at a target point.
By using the proposed robotic positioning and navigation system, the robot can be sent to a
given location with high accuracy and obtain complete information of the environment.

Furthermore, compared with a 360-degree camera, a USB camera is much cheaper.

(a) (b)
Figure 4.4: 360-degree image capture: (a) a 360-degree camera, (b) a typical 360-degree

image

4.4.1 Real-time Robotic Navigation System

In ROS platform, navigation is achieved by a 2D navigation stack reading in the information

from odometer, sensors and a goal pose sent by the controller. The map layer in ROS is
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composed of a static map layer, an obstacle map layer and an inflation layer. The static map
layer is usually based on a premade digital map, such as a sensor map or a floor plan. The
obstacle map layer is constructed using the dynamic obstacle information detected by the
2D/3D LiDAR on the robot. The inflation map is the expansion of the dynamic obstacles on
the obstacle map and the static obstacles on the static map.

Furthermore, using the obstacle information, a cost map is built during navigation process.
Based on the cost map, a global and local path plan is developed. ‘move base’ is the main
package in the navigation stack and consists of five main nodes given by ‘global planner’,
‘global costmap’, ‘local planner’, ‘local costmap’ and ‘recovery behaviour’. In our
experimental setup for robot navigation, we use Dijkstra’s algorithm based global planner and

DWA local planner.

4.4.2 ITmage Taking at a Target Point

In the proposed VLP-based image taking robot platform, a USB camera is mounted on the
top of the robot as shown in Figure 4.5. The USB camera is Phottix PC-20 FHD Webcam and
the resolution of the captured images are set as 640x480. Other setup is the same as that
described in Section 4.3. Figure 4.6 gives the diagram of the proposed VLP-based image taking
robot system. To navigate a robot mounted with a USB camera to a target point to take images
and generate panoramas, the first step is to send the exact location of the target point to the
robot in terms of 3D coordinates of the point or a robot pose on RViz. When receiving the
navigation task, the robot will move to the goal under the guidance of Dijkstra’s global planner
and DWA local planner. After reaching the goal, the robot will start rotating automatically,
capture images with the USB camera and rename the images with the location information
obtained from the VLP system. When rotating for 360 degree, the robot will stop automatically

and wait for the next goal.
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USB Camera

....

Figure 4.5: The robot equipped with a typical USB camera in the proposed VLP-based

image taking robot system.

Controller Robot
Sending a goal to the robot > Moving to
by RViz or command line the goal

Reach the goal

v

Rotating and saving images

Rotate 360 degree

\ 4

Stop automatically

Figure 4.6: Diagram of the proposed VLP-based image taking robot system.

Figure 4.7 visualizes the node relationship in the proposed VLP-based image taking robot

system using rqt_graph package in ROS system. The /mkdir_position node subscribes to three

topics: the image view of the USB camera /usb_cam/image raw, the status if the robot has

reached the goal /move base/action topics and the location of the robot estimated by the

proposed VLP system /slovlp _ekf info. Moreover, when the robot reaches the goal sent the by

the controller, the /mkdir_position node will publish a topic named /stop_rotation. Then a node

named /rotation will subscribe the /stop rotation topic and publish a new velocity control topic

given by zero linear velocity and a fixed angular velocity, which is subscribed by the robot
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base, to make the robot rotate. A new folder will be created on the remote control laptop named
by the x- and y-coordinates of the robot. Images captured by the USB camera will be saved in
the newly generated folder and named by the azimuth angle of the robot when the robot is
rotating. After the robot has rotated for 360 degree, another velocity control topic given by zero

linear velocity and zero angular velocity will be published to stop the robot and wait for the

next command.

Figure 4.7: Graph representation of the nodes in the proposed ROS-based image taking
robot system.

Figure 4.8 shows the robot navigation and image saving process. Two camera views are
given on the left bottom of Figure 4.8(a). The higher one is the view of the USB camera and
the lower on is the view of the industrial camera facing to the ceiling for VLP function. When
the human controller sends a navigation goal to the robot via RViz software, a red arrow will
be shown on the digital map as shown in the middle of Figure 4.8(a). Two terminals are shown
on the right bottom of Figure 4.8(a). The image taking and saving node runs in the higher one
and the robot velocity control node runs in the lower one to control the robot to rotate or stop.
When the robot arrives at the target point, it will start rotating and image saving as shown in
Figure 4.8(b). A new folder will be created and named by the x- and y-coordinate of the robot
estimated by the proposed VLP system. For example, if the robot arrives at the target point of
(157, 39) in centimeters, the new folder will be named with 01570039. Then in the newly built
folder, images captured by the USB camera will be saved and named with the azimuth angle.

For example, if the azimuth angle of the robot is 45 degree, the image will be saved as 0045.jpg
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under the folder 01570039. When the robot has rotated for 360 degree, it will stop and wait for
another command as shown in Figure 4.8(c). The terminal on the right bottom gives the stop
instruction. Except for setting the navigation goal via RViz, we can send the coordinates of the
target point using command lines. Figure 4.8(d) illustrates that a new goal whose coordinates

are (0.06, 0.30, 0) in meters is sent to the robot via terminal.
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Figure 4.8: Navigation and image saving process: (a) sending a navigation goal to the
robot via RViz, (b) the robot moving to the target point, (c) the robot saving images after

arriving, (d) sending another navigation goal to the robot via a command line.
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4.4.3 Panorama Creation
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Figure 4.9: The saved images using the proposed system: (a) the created folders named

with the x- and y-coordinates estimated by VLP, (b) the saved images named with the

azimuth angle.
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After the images are saved with the resolution of 640480 in different folders for different
locations as shown in Figure 4.9, we use opencv package to stitch the image. The stitching
process follows the Brown and Lowe method [27], which is insensitive to the order of the
images, the orientation of the images, any illumination changes or noisy images. The generated

panorama shows in Figure 4.10.

Figure 4.10: The generated panorama using the saved images with location information.

4.5 Summary

This real-time robotic localization platform deals with high precision indoor positioning and
VLC systems, both topics being hot trending in both academia and industry. It implements a
completed positioning system with LEDs as transmitter and the camera on the robot as receiver
and the position information is shown on the remote terminate in real time. The proposed
system design will stimulate a wide range of the innovative utilization of VLP technology and
provide a new idea for microwave or photonics-based positioning systems. Based on the
proposed robot positioning and navigation system, a panorama creation method is proposed
which can generate a panorama at any target point using a robot mounted with a typical USB

camera.

4.6 References

[1] W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning
system based on visible light communications,” J. Opt. Eng., vol. 53, no. 4, pp. 1-9, 2014.
[2] W. Guan, Y. Wu, S. Wen, H. Chen, C. Yang, Y. Chen and Z. Zhang, “A novel three-
dimensional indoor positioning algorithm design based on visible light communication,”

J. Opt. Commun., vol. 392, pp. 282-293.3, 2017.

66



[3]

[4]

[5]

[6]

[7]

[8]

[9]

E. I. Al Khatib, M. A. K. Jaradat, and M. F. Abdel-Hafez, “Lowcost reduced navigation
system for mobile robot in indoor/outdoor environments,” IEEE Access, vol. 8, pp. 25 014—
25 026, 2020.

W. Lv, Y. Kang, and J. Qin, “Indoor localization for skid-steering mobile robot by fusing
encoder, gyroscope, and magnetometer,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no.
6, pp. 1241-1253, 2017.

Y. Murata and T. Murakami, “Estimation of posture and position based on geometric
calculation using IMUs,” in Proc. IECON 2019-45th Annual Conference of the IEEE
Industrial Electronics Society, vol. 1. IEEE, 2019, pp. 5388-5393.

A. McGregor, G. Dobie, N. R. Pearson, C. N. MacLeod, and A. Gachagan, “Determining
position and orientation of a 3-wheel robot on a pipe using an accelerometer,” IEEE Sens.
J., vol. 20, no. 9, pp. 5061-5071, 2020.

F. A. Da Mota, M. X. Rocha, J. J. Rodrigues, V. H. C. De Albuquerque, and A. R. De
Alexandria, “Localization and navigation for autonomous mobile robots using Petri nets
in indoor environments,” IEEE Access, vol. 6, pp. 31 665-31 676, 2018.

J. Zhang, Y. Lyu, J. Patton, S. C. Periaswamy, and T. Roppel, “BFVP: A probabilistic UHF
RFID tag localization algorithm using Bayesian filter and a variable power RFID model,”
IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8250-8259, 2018.

D. Su, H. Kong, S. Sukkarieh, and S. Huang, “Necessary and sufficient conditions for
observability of SLAM-based TDOA sensor array calibration and source localization,”

IEEE Trans. Robot., 2021.

[10]C. Naab and Z. Zheng, “Application of the unscented Kalman filter in position estimation

a case study on a robot for precise positioning,” Rob. Auton. Syst., vol. 147, p. 103904,

2022.

[11]G. Schouten and J. Steckel, ““A biomimetic radar system for autonomous navigation,” [EEE

Trans. Robot., vol. 35, no. 3, pp. 539-548, 2019.

67



[12]S. Xu, W. Chou and H. Dong, "A robust indoor localization system integrating visual
localization aided by CNN-based image retrieval with Monte Carlo localization," Sensors,
vol. 19, (2), pp. 249, 2019.

[13]C. Hsu, S. Liu, F. Lu, C. Chow, C. Yeh and G. Chang, “Accurate indoor visible light
positioning system utilizing machine learning Technique with height tolerance,” in Proc.
OFC 2018, San Diego, CA, USA, 2018.

[14]W. Guan, S. Chen, S. Wen, Z. Tan, H. Song and W. Hou, “High-accuracy robot indoor
localization scheme based on robot operating system using visible light positioning,” IEEE
Photon. J., vol. 12, no. 2, pp. 1-16, 2020.

[15]E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Math.,
vol. 1, no. 1, pp. 171-269, 1959.

[16]D. -D. Zhu and J. -Q. Sun, “A New Algorithm Based on Dijkstra for Vehicle Path Planning
Considering Intersection Attribute,” IEEE Access, vol. 9, pp. 19761-19775, 2021.

[17]P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Trans. Syst. Man Cybern. Syst., vol. 4, no. 2, pp. 100-107,
1968.

[18]S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and control,” in /1993]
Proceedings IEEE International Conference on Robotics and Automation, vol. 2, pp. 802-
807, 1993.

[19]C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann and T. Bertram, “Trajectory
modification considering dynamic constraints of autonomous robots,” in Proc. ROBOTIK
2012; 7th German Conference on Robotics, pp. 1-6,2012.

[20]D. Fox, W. Burgard and S. Thrun, “The dynamic window approach to collision avoidance,”
IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23-33, March 1997.

[21]W. Guan, L. Huang, B. Hussain and C. Patrick Yue, “Robust robotic localization using
visible  light positioning and inertial fusion,” [EEE  Sens. J., doi:
10.1109/JSEN.2021.3053342.

68



[22]B. Hussain, C. Qiu, and C. P. Yue, “A universal VLC modulator for retrofitting LED
lighting and signage,” in Proc. 2019 IEEE 8th Global Conference on Consumer
Electronics (GCCE), Osaka, Japan, 2019, pp. 1008-1009.

[23]C. Qiu, B. Hussain and C. P. Yue, “Bluectooth based wireless control for iBeacon and VLC
enabled lighting,” in Proc. 2019 IEEE 8th Global Conference on Consumer Electronics
(GCCE), Osaka, Japan, 2019, pp. 614-615.

[24]B. Hussain, C. Lau, and C. P. Yue, “Li-Fi based secure programmable QR code (LiQR),”
in JSAP-OSA Joint Symposia. Fukuoka, Japan: Optical Society of America, 2017, p.
6p_A409 6.

[25]W. Guan, X. Zhang, Y. Wu, Z. Xie, J. Li and J. Zheng, “High precision indoor visible light
positioning algorithm based on double LEDs using CMOS image sensor,” Appl. Sci., vol.
9, no. 6, pp. 1238, 2019.

[26]G. Schouten and J. Steckel, “A biomimetic radar system for autonomous navigation,” /[EEE
Trans. Robot., vol. 35, no. 3, pp. 539-548, 2019.

[27]M. Brown, D. G. Lowe, “Automatic panoramic image stitching using invariant features,”

Int. J. Comput. Vis., vol. 74, no. 1, pp. 59-73, 2007.

69



CHAPTER 5 VLP and SLAM-assisted Map Calibration for Robot

Navigation

5.1 Introduction

With the development of sensors, control systems, bionics and artificial intelligence, robot
technology has been investigated and applied in many areas to provide services such as hospital
inspection, hotel delivery and warehouse logistics. Using mobile robots in indoor environments
can effectively improve the intelligence and effectiveness of task execution. Meanwhile, in
robot applications, navigation plays an increasingly crucial role. As an essential element in the
navigation process, high-precision positioning in indoor environments is still a challenging task.
Since the Global Positioning System (GPS) can not provide satisfactory positioning services
in indoor environments due to the extreme attenuation and interruption caused by indoor
structures, Wi-Fi/Bluetooth fingerprinting-based indoor positioning systems (IPSs) have raised
extensive attention and achieved encouraging results. However, positioning based on Wi-
Fi/Bluetooth can only achieve meter-level accuracy [1].

Compared with Wi-Fi/Bluetooth fingerprinting-based positioning, positioning with
landmarks composed of visible light positioning (VLP)-enabled LED lights can provide an
absolute location when using an image sensor as a receiver. Scanning of the whole area is not
required, and global 3D positioning results can be achieved as long as the 3D position
information of the landmarks is encoded in the VLP lights. In our previous works [2] and [3],
we proposed a VLP system based on a single LED that could achieve centimeter-level accuracy,
with an average accuracy of 2.1 cm for a stationary robot [2] and of 3.9 cm for a 3D tilted
receiver camera [3].

Besides positioning, building an accurate map is another important element for navigation
because both positioning and path planning rely on the map information of the environment
[4]. One typical map representation is an occupancy grid map [5], in which the value of each
cell represents the probability of being occupied by obstacles. Currently, Simultaneous

Localization and Mapping (SLAM) technology [6] is widely used to determine the position of

70



the robot and build an occupancy grid map at the same time by fusing available sensor
information. However, SLAM has three main drawbacks. The first is that SLAM can only
determine a local position and the relative movement of the robot in the environment. Second,
SLAM requires scanning and survey of the whole scene to get a map. Last, the position based
on the sensors in the robot, including the odometer and inertial measurement unit (IMU) will
drift and lose global accuracy with time. These drawbacks lead to challenges for mapping and
navigation in large-scale and multi-floor environments.

In addition, the occupancy grid map created by SLAM only contains three types of
information: the cell is occupied, free of obstacles or unknown to the robot. There is no
semantic information of the structures. Moreover, the occupancy grid map may not be oriented
so that humans can distinguish the direction with a correspondence to the real world. The noise
from the sensors will also be shown on the map and mislead the robot as well as humans.
Therefore, it is noticeably difficult for humans to understand an occupancy grid map generated
by a robot and send commands to the robot based on it.

Noting the drawbacks of the occupancy grid map generated by SLAM and its difficulties
for humans, we propose to use a layout map to promote better cooperation between humans
and robots. A human in an indoor environment will always use a layout map, which illustrates
structures and contains semantic information, to navigate a pathway from the current position
to the target position. A layout map always demonstrates the whole area and is complete and
without noise. The boundaries on such maps refer to obstacles in the area that can not be crossed
by arobot and have the same meaning as the occupied cells in an occupancy grid map. However,
the accuracy of a layout map in terms of resolution can not be guaranteed, which will degrade
the accuracy and reliability of navigation.

Therefore, in this chapter, we propose to calibrate the layout map of a scene using the
occupancy grid map generated by SLAM to improve navigation performance. In the mapping
process, an image sensor is mounted on the robot and we use VLP landmarks to acquire the
robot’s position on the layout map. At the same time, SLAM is performed on the robot, and its

position on the occupancy grid map is determined by the sensors. After at least two landmarks
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are tracked by the image sensor on the robot, the occupancy grid map generated by SLAM is
saved as a sensor map. Then, the orientations of the two maps are aligned based on the pixel
coordinates of the tracked landmarks on the maps. Moreover, the scale of the layout map is
calibrated by computing the pixel distance between the key points. To keep the consistency of
the map image after scaling, the eight-neighborhood averaging method and bilinear
interpolation method are applied. It is noteworthy that the map calibration method based on
landmarks is scalable to scenes mounted with multiple landmarks by computing the average of
the rotation angle and scale of every two key points. We finally present experiments to verify
the effectiveness of the proposed map alignment methods and analyze the performance on the
robot operating system (ROS).

The chapter is organized as follows. Related work is introduced in Section 5.2. Section 5.3
explains the mapping system and map transformation process. In Section 5.4, we present the
details of the proposed VLP landmarks and SLAM-assisted automatic map calibration method.
Experimental results are provided and analyzed in Section 5.5. Finally, Section 5.6 concludes

this chapter.

5.2 Related Work

To create a complete map of an environment, especially a large venue, a map merging
method is widely used to integrate the occupancy grid maps generated at different locations of
the environment to be perceived. A map merging method based on pose graphs is presented in
[7], which requires consecutive pose information of the robot to remove the distortion of the
generated maps. However, due to the accumulated error from robot sensors, it is difficult to
continuously obtain high-accuracy positioning results without landmark-based error correction,
especially in a large venue. In [8], a pair-wise map merging method is proposed to integrate the
local maps built by different robots into a single global map. However, it requires high
overlapping percentage between two maps, otherwise it will lead to unreliable map integration
performance. Multi-robot cooperative mapping by introducing augmented variables to
parallelize the computation is proposed in [9], while in [10], a robust map merging algorithm

with multi-robot SLAM (MRSLAM) is proposed, but it also requires a large amount of overlap

72



between the two maps generated by two robots to extract and match the features in the two
maps. In [11], the existing methods on merging redundant line segments are evaluated by
experiments. A distributed method for constructing an occupancy grid map using a swarm of
robots with global localization capabilities and limited inter-robot communication is proposed
in [12] and physical experiments are performed. Instead of a diffusive random walk of the
robots, Lévy walks and larger individual memory are applied to the robots. The drawback of
all these map merging methods, however, based on a single robot or multiple robots, is that
they rely on scanning the whole environment to get complete map information, which is time-
consuming and certainly leads to a high cost.

During recent years, a significant amount of work has been done on map alignment of
different types of maps. In [13], a map alignment method for a floor map and an occupancy
grid map generated by SLAM using a similarity transformation is proposed. The process is not
time-consuming, but it has poor performance on maps with noise, different scales or types of
maps. An improved SLAM using the Bayesian prior extracted from a blueprint is presented in
[14]. Tt improves the performance of SLAM algorithm, but in order to determine the
correspondence of two kinds of maps, the semantic information on the layout map has to be
eliminated. Therefore, it is still difficult for humans to understand the generated map, and the
method cannot actually facilitate the collaboration between humans and robots. Scanning of
the whole scene using SLAM is also required. A nonlinear optimization method for nonrigid
alignment of maps is proposed in [15], but it has a high computation cost due to the nonlinear
optimization. A fast map matching algorithm based on area segmentation is presented in [16].
However, it also requires scanning the whole area and is sensitive to the occupancy grid maps
with distortion induced by the accumulated error from robot sensors.

Therefore, calibrating and aligning maps of different types and maps with distortions or
noise is still a challenging task. In this chapter, we propose to calibrate a layout map with a
sensor map generated by SLAM. The proposed method works for maps in different orientations
or scales. We use high-accuracy VLP landmarks to obtain the position of the robot on the layout

map and align it with its position on the sensor map. At least two landmarks are placed in the
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environment to be perceived, and therefore scanning the whole venue is not required. With a
calibrated layout map, a human can send instructions to the robot with the semantic information
shown on the map and the robot can navigate to the target point with the aid of the occupancy

information on the map, by which the efficiency thus is improved.

5.3 Mapping System

In this section, the system design of the proposed map calibration technology, including the
occupancy grid mapping system, map transformation method and the proposed diagram, will

be presented.

5.3.1 Occupancy Grid Mapping System

An occupancy grid map, which consists of an array of cells representing the occupancy
information of an environment, was first introduced in [17] and is usually generated from
SLAM. The binary variable in each cell represents the probability of the presence of an obstacle
at that location of the perceived environment. If the variable is closer to 0, there is a higher
certainty that the cell is not occupied and is free of obstacles. If the variable is 0.5, the cell is
unknown to the robot, neither occupied nor free. The probability in each cell is relatively
independent. An occupancy map is updated by the detection results from robot sensors. In this
chapter, we use a 2D occupancy map to describe a slice of the 3D perceived environment.
When we save the occupancy grid map as an image file, the probability in each cell p will
convert to a grayscale value in each pixel g:

g = —254p + 254. (5-1)

Therefore, if the probability of an obstacle in the cell is close to 0, the grayscale value in
that pixel will be close to 254, indicated in white. Otherwise, the color of the pixel will reach

black.

5.3.2 Map Transformation

To achieve map calibration, map transformation, including rotation, translation and scaling,
will be performed on the original map image. For a grayscale map image G ofthe size h X w,
each pixel contains the grayscale value of that pixel. As the grayscale values represent three
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different occupancy meanings to the robot, we divide the values in matrix G to three units,
occupied, unknown and free of obstacles, with two thresholds given by t, and ts, as shown
in Figure 5.1. Thus, if the grayscale value is lower than t,, the pixel is occupied. If the
grayscale value of the pixel is higher than ¢, the pixel is free of obstacles. Otherwise, the pixel

1s unknown for the robot.

gii - Gw
9n1 7 Ghw
V3ij
l i l
] J J
1 i 11
column in M, || column in M, || column in M

Figure 5.1: Occupancy-coordinate transformation for a grayscale map image.

To present the map transformation method in an intuitive way, we represent the map image
as three matrices, M,, M, and M, containing the pixel coordinates of the grayscale values
in the three units mentioned above. The three matrices are of the size 3 X N,, 3 X N,, and
3 X Ny, respectively, where N, is the number of pixels that are occupied, N, is the number
of pixels that are unknown to the robot, and Ny is the number of pixels that are free of
obstacles, and N, + N, + Ny = hw. The first rows in the three matrices represent the u-
coordinate of the pixels, and the second rows represent the v-coordinate of the pixels in the
pixel coordinate system. All the values in the last rows are assigned ‘1°. The order in which we
place the pixel coordinates of the grayscale values in matrix G in the occupancy-coordinate
matrices is based on checking the grayscale values in G row by row and then placing their

pixel coordinates into the corresponding matrix.
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Map transformation can be directly performed by matrix multiplication on the occupancy-
coordinate matrices M,, M, and M. For example, if the map is supposed to rotate
clockwise with angle ¢ at the center (wg, h.), enlarge by k times, and then translate
(wg, hy), we should firstly translate the origin of the coordinate system to the map center
(wg, h.), and the first translation matrix T, is given by

1 0 —w,
T.=|0 1 —h.| (5-2)
0 0 1

Subsequently, we should rotate the map clockwise with angle ¢, and the rotation matrix R
is given by

cosp —singp 0
sinp cosp Of.
0 0 1

R= (5-3)

The next step is to enlarge the image, where the scaling matrix S can be described as
kK 0 O
$=10 k Of (5-4)
0 01

Finally, we will translate the origin of the coordinate system back and further translate

(wg, ht), and the translation matrix T 1is given by

1 0 kxw.+w,
0 1 ksh.+h
0 0 1

T = . (5-5)

Therefore, the transformed occupancy-coordinate matrices M,,, M,, and My, can be

obtained by
M,, = TSRTM,,
M,, = TSRT M, (5-6)
Mg, = TSRT My.

It is noteworthy that, after we scale up an image, each pixel of the original map image is
moved in a certain direction based on the scaling constant k. However, if the scaling factor is
larger than 1, there may exist unassigned pixel values in the resultant map image, which are
regarded as holes. Furthermore, if the scaling factor is smaller than 1, there will be multiple

assigned pixels. Therefore, we will add an interpolation and eight-neighbourhood averaging
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method after scaling transformation to appropriately assign the grayscale values to these pixels.

The details will be described in Section 5.4.3.

5.3.3 Overview of the Proposed Map Calibration System

[ e
i 1. System Setup i
i : VLP landmarks '
i Layout Map Robot with sensors with diffarar oe | |
I l | i
Y i
5-2. Mapping !

Set the robot at starting point with a landmark and
control the robot to move to different landmarks

: I

Record robot’s position on SLAM map and
layout map, respectively, with time stamp

3. Calibration

Transform the recorded world coordinates of
the robot to pixel coordinates on the two maps

: |

Align the orientation of the two maps and
calibrate the scale of the layout map

Figure 5.2: The proposed VLP landmarks and SLAM-assisted automatic map calibration
for robotic navigation: (1) system setup, (2) mapping process, (3) calibration process.

The diagram of the proposed map calibration system using VLP landmarks and SLAM is
given in Figure 5.2. The system setup contains a layout map of the environment to be perceived,
a robot, and multiple VLP lights with different IDs installed in the experimental area. The VLP
landmarks are mounted on the ceiling and controlled by visible light communication (VLC)-
enabled light emitting diode (LED) drivers to transmit optical signals [18]. The LEDs are
modulated by the on-off keying scheme and encoded with unique IDs, which contain the LEDs’
world coordinates stored in a uniform resource identifier (URI) database. The robot used in the
mapping system is equipped with multiple sensors, including an IMU, odometer and LiDAR.
A camera is also mounted on the robot to face toward the ceiling and works in rolling shutter
mode to capture the signals broadcasted by the VLP-based LEDs, decode and extract the

position information.
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To start the mapping process, the robot is set under a VLP landmark and uses the camera to
capture the LED image and decode the position of the starting point. Then we apply SLAM to
the robot and control it to move to different landmarks and record its positions, as acquired
from SLAM and VLP landmarks, respectively. The time stamp is simultaneously marked with
the position. After the robot has tracked at least two landmarks in the area, the mapping process
can be stopped and the occupancy grid map generated by SLAM is saved. Therefore, we obtain
one sensor map with the robot’s positions from SLAM and one layout map with the robot’s
positions from VLP landmarks. Subsequently, we propose to use the obtained sensor map and
the robot’s positions on two maps to calibrate the layout map. Firstly, we transform the recorded
world coordinates of the robot to pixel coordinates on the two different maps. Then we calibrate

the layout map by aligning the robot’s positions on it and the occupancy map.

5.4 Map Calibration Method

In this section, we will describe the details of the proposed VLP landmarks and SLAM-
assisted map calibration method. As we mentioned, a layout map contains semantic information,
which is readable for humans to give instruction to robots. However, the scale of a layout map
may not be accurate, leading to an inaccurate resolution of the map in terms of meters per pixel.
In a large scene which is to be perceived, it is difficult and complex to get the resolution through
measurement. Compared with a layout map, the sensor map generated from SLAM has a much
more accurate resolution, but more noise points. Therefore, we propose to calibrate the scale

of the layout map, which will help robots to achieve better navigation performance.

5.4.1 Positioning on Two Different Maps

Figure 5.3 illustrates the proposed mapping process. At least two VLP landmarks are
required to be mounted on the ceiling of the environment which is to be perceived. The exact
position of the mounting location in the environment is encoded in the VLP light and is
broadcasted to the robot by OOK modulation. The positions of the VLP lights are also marked
on the layout map. We use a robot equipped with a camera, odometer, IMU and LiDAR. The

camera is set to face the ceiling and is used to get the robot’s position by VLP. When the camera
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detects a VLP landmark, it will decode the position information encoded in the rolling shutter
patterns, and then translate it to its own position. The translation from the world coordinates of
the landmark to the world coordinates of the robot is calculated by the location of the landmark
on the camera plane and the orientation of the robot determined by the odometer on the robot.
Then the world coordinates of the robot are further translated to the pixel coordinates on the

layout map as the landmarks are labeled on the layout map.

Robot with a
camera, odometer,
IMU and LiDAR

| }

VLP lights ’ SLAM and XD
on the ceiling record the
world Ji ‘
*ﬁ‘ coordinates /

Tra_ck landmarks - i determined by
using a camera  £44 robot sensors = ————

l

EE g

Get world cqordlnates Save the
by decoding the sensor map
landmarks
l A 4
Translate to pixel coordinates Translate to pixel coordinates
on the layout map on the sensor map

Figure 5.3: Mapping process with VLP landmarks and SLAM technology.

In the mapping process, the robot starts under one of the landmarks to get the first key point
for map calibration. Then it is controlled to perceive the environment and conduct SLAM with
its odometer, IMU and LiDAR sensors. The world coordinates obtained from the robot sensors
are recorded at the same time. After the robot has tracked at least two VLP landmarks, which
means that we get at least two pairs of coordinates of the key points from the two different
positioning methods, we can save the occupancy grid map created by SLAM as a sensor map,
set the resolution of the map in terms of meters per pixel, and then translate the recorded world

coordinates of the robot to pixel coordinates on the sensor map with the resolution.
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5.4.2 Calibration of the Orientation

A layout map is readable for humans and is always presented in an orientation in which
humans can understand the semantic information. However, the sensor map created by the
robot may not always be in the same orientation as the layout map used by a human. Therefore,

we propose to correct the orientation of the sensor map.

u u
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_.g..,..f:f _______ A A | o :
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(w2, vi2) i(*;
2

(a) o (b)

Figure 5.4: Key points on the two maps: (a) layout map, (b) sensor map.

Firstly, we convert the layout map to a grayscale image G;. Since in a typical layout map,
furniture and structures are drawn with black or dark squares. Thus, the grayscale values in the
converted layout map have the same meaning as the grayscale values in the sensor map, where
if the pixel is in black and its grayscale value is close to 0, the probability of an obstacle at that

point is close to 1. Then for the saved sensor map G, we firstly find the occupancy-coordinate

representation given by M , Mg and M ;- Then in the mapping process, we assume that

the robot has detected two landmarks and labeled them on the two maps according to the
translated pixel coordinates given by (u;;,v;1) and (u;,,v;,) on the layout map and (ugq,Vs1)
and (uy,,Vs;) on the sensor map, as shown in Figure 5.4. Then we draw a line between the two
key points and find the angle between the line and the negative u-axis in the pixel coordinate

system.
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Figure 5.5: Orientation calibration for the sensor map: (a) translate the rotation center, (b)
rotate and crop, (¢) fill in the corners.
To rotate the sensor map clockwise with the angle of a; — a;, where «; is the angle on the

layout map and a; is the angle on the sensor map, we firstly translate the origin of the
: h S . -
coordinate system to the map center (%, ?S), which is the rotation center, as shown in Figure

5.5(a). The origin translation matrix Tgq is given by

1 0 —%
Tsa=|o 1 _%, (5-7)
0 0 1

where w, and hg are the width and height of the sensor map image Gg. Subsequently, we

substitute the rotation angle a; — a; into the rotation matrix defined in (5-3) as

cos(a; —ag) —sin(aq;—a;) O
R = |sin(a; —a;) cos(a; —ag) O] (5-8)
0 0 1

Then we translate the origin of the coordinate system back, and the translation matrix T,

is given by
1 0 =
2
T, =10 1 % (5-9)
0 0 1
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By multiplying the translation matrices and rotation matrix, the occupancy-coordinate

representation matrices of the sensor map are given by
Ms,,t = TsZRsTslMs,,r
Msut = TsZRsTslMsur (5-10)
M = TsZRsTslM

sft Sf'

where Mg , Mg and M fe are the occupancy-coordinate matrices after rotation. Then we
assign the corresponding grayscale values to the pixels in sensor map image G and get the
rotated sensor map image Gg;-.

After rotation, the rotated sensor map image G may not be in the original size of the
sensor map image given by wg X hg. Therefore, we find the maximal u-coordinate of the pixels
indicating the cells are free of obstacles or occupied by an obstacle, which is given by

Doy = max[Msot(l, D],i € [1,N,]1NZ,
(5-11)
Df,,, = max [Msft(l,j)],j € [1,Nf]NZ,

where Z is the integer set, N, is the width of matrix Mg , and Ny is the width of matrix

M;_ . Similarly, we determine the maximal v-coordinate of the pixels indicating the cells are

sft'
free of obstacles or occupied by an obstacle, which is given by
Po,,, = max[M;_(1,0)],i € [1,N,]NZ,
~1 . (5-12)
Pfym = Max [Msﬂ(l,J)] ,j € [1,Nf]NZ,

Then we find the maximum in the u-coordinates and v-coordinates, respectively, given by

Wem = max[w, Poym pfum]'

5-13
hsm = max[hg, Poym» pfvm]' ( )

where (Wgy,, hgp) is the size to which we will crop the rotated sensor map.

Then we trim the map image by the width of wy,, and the height of hg,,, as shown in

Figure 5.5(b) and delete those columns in M Mg, and M

Sot? Furthermore, we fill in the

Sfee
corners with the grayvalues indicating that the pixel is unknown, namely, the half probability
of an obstacle, as shown in Figure 5.5(¢c), and add the pixel coordinates of the elements in the
corners to matrix My . The obtained occupancy-coordinate matrices of the sensor map after

cropping and filling are given by M M and M e

Som?®
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It is noteworthy that the map rotation process we describe above is based on two key points,
namely, two VLP landmarks, but it is scalable to a perceived environment that is mounted with
multiple landmarks by computing the average rotation angle of every two key points on the

map and substituting the average angle into (5-8).

5.4.3 Calibration of the Scale
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Figure 5.6: Vertical and horizontal distances between the two key points: (a) on the layout
map, (b) on the sensor map.

After we align the orientation of the two maps, the next step is to align their scales. As the

resolution of the sensor map obtained from SLAM is more accurate than that of a manually

drawn map, we propose to calibrate the scale of the layout map with the sensor map. Firstly,

we determine the occupancy-coordinate representation of the layout map matrix givenby M, ,
M, and M, P which indicate the pixels are occupied, unknown or free of obstacles,
respectively. Then we find the pixel distance between the two key points on the layout map,
given by d,,, in the u-axis and d,, in the v-axis, as shown in Figure 5.6(a), where w; is the

width and h; is the height of the layout map. Similarly, we get the pixel distance between the

two key points on the sensor map, given by d,,_ in the u-axis and d,,_ in the v-axis, as shown
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in Figure 5.6(b). It is noteworthy that, according to (5-10), the pixel coordinates of the two key

points on the sensor map have also been transformed after the rotation as

Usm1 Usq
lvsmll = TsZRsTsl [vsll ]
1 1
Usm2 Us? (5-14)
vstl = TsZRsTsl [USZl )
1 1

where (Ugn1, Vsmi) and (Ugmz, Vsmz) are the pixel coordinates of the key points on the sensor
map after rotation.

Next, we modify the scale of the layout map, and the scaling matrix §; is given by

[Z2 o o]
do
dy,
0 0 1

Then, we multiply matrix §; with the occupancy-coordinate representation matrices of the

layout map as

Mlor = SlMlo’
M, =SM,, (5-16)
M, —=SM,,

where M, , M;,  and M, ., are the occupancy-coordinate layout map matrices after scaling.

Since the scaling factor d_uz may not be an integer, the obtained pixel coordinates in the

Us

layout map matrices M;,_, M, and M, ;. May result in non-integers. Therefore, we firstly
round all the values in M;__, as given by

My, (i) = My, (i) + 31, VM, (L)) €N, (5-17)
where [-] is the floor function, i = 1,2, j € [1,N, ]NZ, N, is the width of matrix M
and N denotes the natural number set. Similarly, we round the values in M;  and M, -

In addition, if the scaling factor is smaller than 1, after multiplying the scaling matrix, there

will be multiple columns in M;,  composed of the same pixel coordinates. Then, for each
occupancy-coordinate matrix, we treat each column as a single entity and extract the unique

columns with no repetitions. The extracted columns constitute three new matrices given by
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M M, and M, . Furthermore, one pair of pixel coordinates may occur in different
l Lye lfe

occupancy-coordinate matrices, indicating different grayscale values in the layout map image.
To keep the consistency of the grayscale values in the map image, we propose to use the eight-
neighborhood averaging method to determine the grayscale value of a pixel that has multiple
correspondences. For example, if pixel coordinates (u,, v,) occur in both of the first two
columns of matrix M, , and M; , we check the eight neighbourhood pixels (u, + i, v, +
J), where i, j=1,0,-1, find the average of the grayscale values that these pixel coordinates refer
to, and assign the average value to pixel (u,, vy,) given by g, , . Then coordinates (u,, vy)
are reallocated to the occupancy-coordinate matrix by comparing g,, ,,, with the threshold ¢f
and t,, and are removed from previous matrices M; , and M; .

Moreover, if the scaling factor is larger than 1, there will exist unassigned pixels in the map
image after scaling, which are regarded as holes. To maintain a consistent trend across the
pixels, we propose to use a bilinear interpolation method to appropriately assign the grayscale
values to these pixels by at least four well-assigned pixels. For example, the grayscale value of
pixel (uy, vy)is unassigned, but the grayscale values at the pixels (v, v1), (uq, v3), (Uy, vq)

and (u,, v,) are known. We first perform the linear interpolation in the u-coordinates as

__ Ux—Ug U~
g'l,Lk'Ul - Up—Uq gulvl Uy —Uyg guZ'Ul' 5 18
__ Upx—ug Up—Uq ( - )
g'l,Lk'Uz - Up—Uq gul'UZ Uy —Uyg ULy’

where gy v, Guyvy> Guw, ANA Gy,p, are the grayscale values of pixel (uy, vy), (U, v3),
(uy, vp)and (u,, vy), respectively. Then we proceed by interpolating in the v-coordinates and
substituting the results of g,,,, and gy,,, from (5-18)as

_ U2 Vg Vg—V1
gUk'Ul

gukvk gukvz

V2—V1 V2—V1

(5-19)

1
= U, —u U, — U
(uz—uq1)(w2-v1) [ 2 k k 1] [

Gu,v, gulvz] [uz - uk].

gu2v1 guzvz uk - ul

Using (5-19), each unassigned pixel can be determined by at least four pixels allocated with
definite grayscale values. Thereby, after multiplying a scaling matrix, a complete map image
can be obtained by a rounding operation, eliminating duplication, eight-neighborhood

averaging and bilinear interpolation.
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Furthermore, similarly to the calibration method for the map orientation described in Section
5.4.2, the calibration for scale is also scalable to the a perceived environment that contains
multiple VLP landmarks, as long as we find the average of the scaling factor of every two key

points on the map and substitute the average into (5-15).

5.5 Experimental Results

In this section, experiments are conducted to evaluate the performance of the proposed map
calibration method. We will describe the experiment setup, evaluate map alignment
performances and analyze the navigation results on the maps that are calibrated by the proposed

method.

5.5.1 Experiment Setup
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Figure 5.7: Experimental setup: (a) a building blueprint, (b) a floor map, (c) three VLP

landmarks, (d) a TurtleBot3 Burger robot.
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Table 5.1: Experimental Parameters

LED Height 2.7m
LED Diameter 0.175m
LED Power 18 w

Camera Resolution 2048x1536

The experiment is performed in our lab (Integrated Circuit Design Center, 3/F, CYT
Building, HKUST). Two maps with different accuracies are prepared: one is a building
blueprint with a high accuracy and the other is a floor map with a rough accuracy, as shown in
Figure 5.7(a) and (b). We set three VLP lights as landmarks at different locations in the
perceived environment, as illustrated in Figure 5.7(c). They are modulated with different IDs,
which are encoded with different positioning information stored in the database. Figure 5.7(d)
illustrates the TurtleBot3 Burger robot, the ROS standard platform robot we use for the VLP
receiver and SLAM process. The robot is equipped with a Raspberry Pi 3 Model B, running
Ubuntu 16.04 with ROS. Sensors are mounted on the robot for the SLAM process and VLP
decoding. These include an IMU, odometer, 360° LiDAR and an industrial camera facing
toward the ceiling. We use a laptop running Ubuntu 18.04 with ROS to remote control the robot
and record the data from the robot in the mapping process. The experimental parameters and

the camera options are summarized in Table 5.1.

5.5.2 Mapping Process and Alignment Results

In the mapping experiment, we set the robot under VLP light No. 1 as the starting point and
control it to move to VLP light No.2 and then No.3. At the same time, the robot performs
SLAM using the Gmapping [19] package in ROS. Thus, the robot’s location on the SLAM map
and position as estimated by the VLP system are recorded synchronously, and the SLAM map
is visualized in RViz software on the laptop, as shown in Figure 5.8. After the robot has tracked
all three VLP lights, the occupancy grid map is saved. Then we perform the proposed map
calibration method to calibrate the orientation and scale of the saved sensor map and the
building blueprint. To intuitively evaluate the performance of the map calibration results, we
align the two maps, specifically, translating the key points to the same pixels on the map. Then
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we overlap the pixels which are occupied to compare the structures shown on different maps

of the same experimental area.

Remote Occupancy grid Position on
control map layout map

s T Meswe  ~ 0Pumeluimete 7 0NwGod bk

PO 50s Time: 1632894757, lapsed: 350.67 1632694757.43 | Wall Elapsed: 150.67

Ml Reset Left-Click: Rotate] rlddlq{lkk:mwr X/¥. Right-Click= Zoom. Shift: More options.
Y

Camera Position on
view sensor map

Figure 5.8: Mapping process visualized in RViz.

By multiplying the scaling matrix as (5-15) and rounding the values, the pixel coordinates

. ) d d
of the key points on the layout map after scaling can be computed as ([d—Zl U + %J, [d—:l v+
S S

d d
%j) and ([d—ul up, + %J, [d—vl v, + %J). Then we translate the pixels on the sensor map so that the
Ug Vs

key points on the two maps are located at the same pixel coordinates. The translation matrix is

given by
d da
10 ld_::ull +%J_usm1+ld_:iulz "%J_usmz
2
= dy dy -
TS3 ld_vlvll +%J_usm1+ld_vlvlz +%J_Usm2 ’ (5 20)
0 1 S S
2
0 0 1
Multiplying the translation matrix in (5-20), the translated matrices are given by
M, =TgaM, . (5-21)

Then we find all the pixels on the layout map, whose coordinates are given in My, and
allocate these pixels with the grayscale values of the same pixels on the sensor map.
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We first calibrate the building blueprint as shown in Figure 5.7(a), with two key points given
by VLP lights No.1 and No.3. The alignment result is shown in Figure 5.9(a), and we check
the pixel distance between the left bottom corners of cubicle B13 on the two maps given by 34
pixels. By multiplying the resolution of the map in terms of meters per pixel, the distance will
be 0.85 m in the world coordinate system. To improve the alignment performance, we further
add one key point given by VLP light No.2 by determining the rotation angle and scaling factor
with the average of every two key points. The alignment result based on three key points is
illustrated in Figure 5.9(b), and the distance between the left bottom corners of cubicle B13 is
given by 11 pixels in the pixel coordinate system and 0.275 m in the world coordinate system.
Therefore, increasing one key point in the mapping process will improve the map alignment
performance. In the next section, to achieve better navigation performance, we use the layout

maps calibrated with three key points.
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Figure 5.9: Map alignment result of the building blueprint and sensor map: (a) based on

two key points, (b) based on three key points.
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5.5.3 Navigation on Calibrated Map
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Figure 5.10: Navigation goal and navigation results on the sensor map, floor map and

building blueprint.
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Figure 5.11: Navigation process with LIDAR detection results, DWA local plan and

Dijkstra's global plan.
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Table 5.2: Navigation Results

Points Sensor Map (cm) | Building Blueprint (cm) | Floor Map (cm)
Q) 65 45 49
@ 67 46 50
® 83 57 59
@ 88 60 59
® 90 62 63
Average 78.6 54 56

To further evaluate the performance of the proposed map calibration method, we use a
navigation system based on an adaptive Monte Carlo localization (AMCL) [20] package,
Dijkstra’s algorithm [21] package and dynamic window approach (DWA) [22] package in ROS
to achieve autonomous navigation of the robot on the calibrated maps. We set the navigation
goal of the robot to be next to cubicle B06, as shown in Figure 5.10. The distance between the
starting point and the target point is 14.14 m. During the navigation, the position of the robot
is determined by the AMCL method. The global plan is achieved by Dijkstra’s algorithm, and
the local plan is designed by the DWA planner. As shown in Figure 5.11, the blue dots
encapsulated in the outlines in pink are the obstacles detected by the LiDAR on the robot. The
red line is the DWA local planner, and the green line, which connects to the navigation goal,
represented by a red arrow, is the global plan based on Dijkstra’s algorithm. On each map, we
repeat the navigation five times and the navigation results on the different maps are illustrated
in Figure 5.10 and summarized in Table 5.2. The table lists the distance between the actual
point reached in the real world and the target destination sent to the robot. Compared with the
navigation results on the sensor map, those on the calibrated building blueprint and the
calibrated floor map are much closer to the set destination. The average navigation accuracy is
improved by 24.6 cm on the building blueprint and 22.6 cm on the floor map, respectively.
Furthermore, with the proposed calibration method, the robot on the floor map, which has lower
accuracy in scale and structure location than the building blueprint, can achieve a navigation

performance nearly as good as that on the building blueprint, which verifies the effectiveness
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of the proposed map calibration method. As mentioned in Section 5.1, the sensor map generated
using SLAM is with noise and distorted as shown in Figure 5.10. However, the noisy sensor
map will not degrade the calibration performance as listed in Table 5.2 as the calibration
process is based on the positions of the key points on the two different maps. The positions of

the key points on the layout map are estimated by the proposed high-accuracy VLP system.

5.5.4 Navigation with Semantic Information
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Figure 5.12: Compiled semantic information on the floor map.

As we mentioned in Section 5.1, a layout map contains semantic information which is
accessible to humans and allows them to send instructions to robots. After calibrating the layout
map, we cannot only send the navigation target to the robot by selecting one point on the map,
but also navigate the robot with pre-compiled semantic information on the layout map. For the
floor map illustrated in Figure 5.7(b), we compile three positions with semantic information,
as shown in Figure 5.12, where D49 refers to Johnny’s cubicle, D50 refers to Frederick’s
cubicle and BO1 refers to the last line of the test bench. Figure 5.13 illustrates the navigation
experiment with semantic information. When the program starts, the semantic information of
the map is shown in the terminal, as shown in Figure 5.13(a). Then we send a navigation goal
by tapping the target identifier number of the semantic information, and a red arrow indicating
the aimed point is marked on the floor map, as shown in Figure 5.13(b). Figure 5.13(c)
illustrates the condition that the robot has arrived at the target point and the semantic

information is illustrated again in the terminal. We can repeat the navigation process by tapping
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another identifier number of the navigation goal, as shown in Figure 5.13(d). Using this process,
the semantic information on the floor map helps humans to set tasks for the robots in a more
straightforward and user-friendly way compared with a sensor map, which has no semantic

information.
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(d)
Figure 5.13: Navigation process with semantic information: (a) sending the command to
the robot, (b) robot navigating to the target point, (¢) after reaching the target point, robot

waiting for the next navigation goal, (d) robot navigating to the second target point.

5.6 Summary

In this chapter, we propose a VLP landmark and SLAM-assisted automatic map calibration

method for robot navigation. VLP landmarks with different IDs are mounted in the
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environment to be perceived, and a layout map of the environment is prepared to be calibrated.
By tracking the landmarks and conducting SLAM at the same time, the robot’s position as
obtained from the VLP method and the position as obtained from SLAM are recorded
synchronously with the time stamp. By aligning the recorded coordinates on the layout map
and the sensor map saved from SLAM, the orientation and the scale of the layout map is
calibrated. Experiments are performed to evaluate the proposed map calibration system in
terms of the map alignment performance and navigation performance. We calibrate two layout
maps: a building blueprint of high accuracy and a floor map of rough accuracy. The experiment
results show that the robot can achieve a better navigation performance on the calibrated layout
maps compared with that on the sensor map, and can achieve the navigation performance on

the calibrated floor map almost the same as that on the calibrated building blueprint.
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CHAPTER 6 Conclusion, Future Work and Publications

6.1 Summary of Contributions

In this thesis, a high-accuracy visible light positioning (VLP) system is proposed, based on
which robotic navigation and map construction is also achieved. The key contributions can be
divided into the following three parts:

(1) A tilted receiver camera correction and partially blocked LED image compensation
method is proposed for indoor VLP systems. The proposed VLP system does not require the
LEDs to be placed at high density and can eliminate the additional positioning errors caused
by a tilted receiver camera in realistic scenarios. We propose two methods to detect the
geometric features of the captured LED images, and the experimental results show that both
methods perform better than the existing single LED-based VLP methods in ideal scenarios.
Furthermore, the two proposed methods outperform the existing methods and can effectively
suppress the performance degradation when an incomplete LED image is captured. Therefore,
the proposed methods can provide stable positioning services and further improve the
robustness of the VLP system.

(2) An indoor VLP platform for real-time robotic localization and navigation is developed.
It implements a completed positioning system with LEDs as transmitter and a camera on the
robot as receiver and the position information is shown on the remote terminate in real time.
The proposed system design will stimulate a wide range of the innovative utilization of VLP
technology. Based on the proposed robot positioning and navigation system, a panorama
creation method is proposed which can generate a panorama at any target point using a robot
mounted with a typical USB camera.

(3) A VLP landmark and SLAM-assisted automatic map construction method is proposed to
improve robot navigation. VLP landmarks with different IDs are mounted in the environment
to be perceived, and a layout map of the environment is prepared to be calibrated. By tracking
the landmarks and conducting Simultaneous Localization and Mapping (SLAM) at the same

time, the robot’s position as obtained from the VLP method and the position as obtained from
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SLAM are recorded synchronously with the time stamp. By aligning the recorded coordinates
on the layout map and the sensor map saved from SLAM, the orientation and the scale of the
layout map is calibrated. Experiments are performed to evaluate the proposed map calibration
system in terms of the map alignment performance and navigation performance. We calibrate
two layout maps: a building blueprint of high accuracy and a floor map of rough accuracy. The
experiment results show that the robot can achieve a better navigation performance on the
calibrated layout maps compared with that on the sensor map, and can achieve the navigation
performance on the calibrated floor map almost the same as that on the calibrated building

blueprint.

6.2 Future Work

The high-accuracy indoor positioning robotic system presented in the thesis will serve as a

platform for further research in following key areas.

6.2.1 An Prior Information Assisted Distortion Elimination Method for Occupancy Grid Map

Construction

An occupancy grid map contains three kinds of information representing by different values
of gray scale given by occupied, free of scale and unknown. Each cell contains the probability
that it is occupied. Occupancy grid maps are usually constructed by robots conducting SLAM.
Mapping process requires the probability that cell is occupied. SLAM requires the probability
that the cell is occupied and where the robot is. Conventional SLAM is based on light detection
and ranging (LiDAR), odometer, inertial measurement unit (IMU) and other inertial sensors,
and uses odometer for robotic positioning and LiDAR to detect obstacles and correct the
accumulated error from odometer. However, one crucial drawback of SLAM is that the
constructed map will get distorted with time due to the drift of the estimated robot position
caused by the accumulated error from the sensors. By inducing VLP-based landmarks to a
SLAM system to correct the distortion of the occupancy grid map caused by the accumulated
error from the odometer, the absolute positioning results from VLP lights can help increase

positioning accuracy. Furthermore, if we already have an accurate layout map, the gray scale
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values on the layout map can provide the prior information for LiDAR detection and correct
the distortion caused by the odometer as well. There are two main challenges in the proposed
work. One is to remove the semantic information on a layout map as a layout map always
contains semantic information for human readers. The other one is how to determine the weight
of the probability provided by the layout map and the weight provided by the sensor
observations and control input.

6.2.2 Automated 3D Reconstruction using Robot-mounted 360-Degree Camera with Visible

Light Positioning Technology for Building Information Modelling Applications

Building Information Modelling (BIM) is a method using well-structured digital
information for generating, delivering and handling data on a design project during its
construction lifecycle. By creating a digital BIM, all necessary parties, including engineers and
project coordinators, can communicate efficiently and effectively resulting in a higher overall
value. BIM brings 3D construction information of every component in a building together,
which helps to schedule, monitor and inspect the construction projects. Currently, BIM
construction and project progress inspection is done by software engineers and staff holding
360-degree cameras to take photos at multiple locations. Although 360-degree photos captured
at construction site are static and discontinuous with each other, they provide redundant visual
information on the existing BIM model, which is the pain point of current solution. Therefore,
facing the needs of a new generation of intelligent construction, how to construct a real-time
dynamic self-reconfiguration high-accuracy positioning system based on the existing
technology is of great significance. Through the combination of intelligent robots and
omnidirectional vision, it is expected to provide BIM with full-cycle, multi-angle, high-
precision environmental sampling data, so as to provide support for better optimization of the
construction process.

We propose to use 360-degree photos to reconstruct 3D models for buildings and use indoor
VLP technology for robots, such as automated guided vehicle (AGV), mounted with 360-
degree camera to acquire and label the positioning data of the captured 360-degree photos. This

helps to provide quick updates of the dynamic changes at the on-going construction site,
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minimize the risk of mistakes, reduce discrepancies, and lower abortive costs. Furthermore,
during the construction with BIM model, 360-degree camera-aided 3D reconstruction is an
efficient way to survey the facilities and capture all of the information in 3D for lifecycle
management.

The use of 360-degree cameras with indoor VLP technology to create 3D construction could
become very useful to provide inspection of no matter how long and narrow spaces and add
these spaces to BIM model. At present, the market has great demand for this technology, but
there is still no suitable product available. On one hand, it is limited by the accuracy of indoor
positioning, and on the other hand, it is limited by the accuracy of multi-view stereo. Therefore,
the plan proposed in this project is intended to break through the bottleneck problem: 1) Utilize
the combination of indoor mobile platform and VLP technology to achieve centimeter-level
positioning capabilities in any indoor environment; 2) Use the 360-degree camera to
dynamically collect environment images to realize the centimeter-level distributed
environment reconstruction ability; So as to provide the first efficient solution for BIM industry
applications.

Figure 6.1 describes the hardware and processing flow of the proposed project. VLC
modulated LED lights are used as location beacons to provide location signals that are captured
by the robots to calculate 3D position with cm-level accuracy that can be translated to
determine the camera pose of the 360-degree camera mounted on top of the robots. Each 360-
degree image is unfolded into four 2D images initially. As 3D reconstruction proceed, the
number of dissected 2D images are optimized depending on the performance of our proposed

visual-robotics-VLP-based 3D reconstruction scheme.
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Figure 6.1: Conceptual diagram illustrating 3D reconstruction using 360-degree cameras

mounted on multiple mobile robots, and visible light communication (VLC) sources used for

3D localization and camera pose estimation.
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