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Visible Light Positioning Based Robotic Navigation and Mapping 

by 

Yiru WANG 

Department of Electronic and Computer Engineering, 

The Hong Kong University of Science and Technology 

Abstract 

With the growing demand for location-based services such as indoor navigation, robot 

control and object tracking, indoor positioning technology has attracted increasing attention 

from both academia and industry. For outdoor environments, the Global Positioning System 

(GPS) provides real-time positioning services based on satellites and is widely used in airplanes, 

automobiles and portable devices. However, it cannot realize efficient positioning in indoor 

environments because satellite signals will be extremely attenuated and interrupted by indoor 

obstacles. Currently, wireless technologies, including Bluetooth and WiFi, are widely applied 

to indoor positioning systems. However, these technologies can only achieve meter-level 

accuracy and are potentially vulnerable to malicious activities. Visible light positioning (VLP) 

technology can solve these problems, with multiple advantages including centimeter-level 

accuracy, compatibility with existing lighting infrastructure, low cost and insusceptibility to 

electromagnetic interference. Therefore, VLP systems are very competitive to provide indoor 

positioning service. In this thesis, a high-accuracy VLP system is proposed, based on which 

robotic navigation and map construction is also achieved. The design and implementation of 

the system is divided into three parts. 

In the first part, an image sensor-based single-LED VLP system is proposed. The additional 

positioning error caused by tilted receiver camera is corrected by the rotation angles estimated 
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by the inertial sensors. The proposed VLP system can also provide positioning services even 

when an incomplete LED image is captured by the camera.  

In the second part, a VLP-based mobile robot experiment platform is built. The proposed 

platform consists of two parts: intelligent lighting and image sensor-based VLP light tracking. 

Smart LEDs are used as the access points of the VLP system and are modulated with digital 

IDs containing the information of the LEDs’ world coordinates. Therefore, the proposed 

positioning system is scalable, with no maximum scale limit. The camera mounted on robot 

will capture the images of LEDs and use ID recognition algorithm to identify the IDs then get 

the position with geometric feature-based image processing algorithm. Based on the proposed 

robot positioning and navigation system, a panorama creation method is proposed which can 

generate a panorama at any target point using a robot mounted with an ordinary USB camera. 

In the final part, an autonomous map construction method using VLP landmarks and 

Simultaneous Localization and Mapping (SLAM). A layout map of the environment to be 

perceived is calibrated by a robot tracking at least two landmarks mounted in the venue. At the 

same time, the robot's position on the occupancy grid map generated by SLAM is recorded. A 

map transformation method is then performed to align the orientation of the two maps and to 

calibrate the scale of the layout map to agree with that of the sensor map. After the calibration, 

the semantic information on the layout map remains and the accuracy is improved. 
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CHAPTER 1 Introduction to VLC Systems  

1.1 Introduction to VLC 

Due to the rapid growth of the Internet of Things (IoT) and increasing demand for wireless 

services, it has become more and more difficult for the limited spectrum resources of radio 

frequency (RF) systems to meet the needs of wireless users. For visible light spectrum, about 

390 THz of bandwidth is available, while the entire RF spectrum, including microwaves, 

consists of 300 GHz of bandwidth [1], as shown in Figure 1.1. Therefore, the visible light 

spectrum is about 1300 times the size of the entire RF spectrum [2]. Visible light 

communication (VLC) systems utilizing unlicensed light spectrum can serve as an alternative 

technology to the existing RF systems in indoor wireless applications.  

 

Figure 1.1: Spectrum of RF versus visible light. 

Different from earlier lighting facilities, LEDs are capable of achieving high-speed response 

to light intensity modulation (IM). By encoding data in the emitted light, LEDs can be utilized 

as access points in VLC systems to transmit information at a high speed [3]. If the modulation 

frequency is higher than the flicker fusion threshold [4], the human eyes will not observe the 

changing light intensity levels, and LEDs can transmit data and maintain the illumination 

quality at the same time. Furthermore, LEDs can provide long-lifetime, low-power, high-

brightness and stable illumination services with a wide band light beam, leading to its 

increasing demand of employment for general lighting in commercial and residential scenarios 

[3]. Therefore, VLC systems have multiple advantages by using LEDs as transmitters, 

including low cost, high signal-to-noise ratio (SNR), anti-disturbance of electromagnetism and 

good confidentiality. As visible light beam cannot penetrate through the walls and most non-
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transparent objects in buildings, which is known as the light-of-sight (LOS) property of visible 

light beam, VLC signals in different rooms will not interference with each other, and therefore 

are independent and private.  

1.2 Types of VLC Systems Based on a Receiver 

The receivers in VLC systems can be divided into two types: photodiodes (PDs) and image 

sensors. Compared with PD-based VLC, image sensor-based VLC, which is also known as 

optical camera communication (OCC) [5], is more attractive due to the ubiquity of cameras on 

most of today’s mobile devices, such as smartphones and tablets.  

1.2.1 High-Data-Rate PD-based VLC Systems 

 

Figure 1.2: A PD-based VLC system. 

In a PD-based VLC system as shown in Figure 1.2, the LED-based transmitter is controlled 

by a VLC-enabled LED driver to transmit optical waveforms and the PD-based receiver 

converts the received optical power to electrical current following the photoelectric effect. 

Compared with an image sensor-based VLC system, a PD-based system can achieve higher 

data rate. Stand-alone photodetectors are capable to achieve throughputs of several gigabits per 

second [6]. However, the detection areas of PDs are very small. Therefore, PD-based VLC 

PD

LED
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systems require precise alignment between LED and PD for signal detection [7], which limits 

its application in our daily lives. 

1.2.2 Low-Data-Rate Image Sensor-based VLC Systems 

When optical waves falls on an image sensor, they are collected by an array of small discrete 

cells called pixels. The projected image can thereby be divided into these pixels. The quantum 

efficiency of a pixel determines its efficiency of absorbing incident photons and converting 

incident photons into charges. Each pixel consists of a PD and an image sensor is composed of 

a matrix of multiple PDs.  

 

Figure 1.3: The method of image sensor scanning the image: (a) rolling shutter mode, (b) 

global shutter mode.  

There are two major methods of image sensors reading out the signal from each pixel, being 

the global shutter mode and the rolling shutter mode, as shown in Figure 1.3. An image sensor 

working at global shutter mode capture an entire frame all at once. All the pixels on the sensor 

are read out at the same time. Most charge-coupled device (CCD) sensors employ global shutter 

mode. The “rolling shutter” feature of an image sensor can be used to receive data at a faster 

rate. Since there are a huge number of PDs in one image sensor, it is not possible to read out 

all the pixels at the same time. Therefore, at a time, only one row or one column in the PD 

matrix is read out, where the lines are scanned sequentially. This process of reading the output 

of each pixel row by row or column by column is called rolling shutter. Complementary metal–

oxide–semiconductor (CMOS) sensors tend to work at rolling shutter mode. Due to the huge 
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prevalence of CMOS sensor in modern cameras, rolling shutter has been extensively used in 

video and filmmaking. One main drawback of rolling shutter is that it will cause warping when 

capturing a moving object, because the camera working in rolling shutter mode is always 

exposed in a progressive motion. 

It is noteworthy that the CMOS image sensor on any mobile device can receive signals via 

VLC. In order to achieve a high resolution, a large amount of PDs have to be placed on one 

image sensor. A modern image sensor usually contains up to millions of discrete PDs, which 

leads to a low frame rate that the image sensor can achieve. For example, the frame rate of a 

conventional image sensor on a smartphone is usually lower than 40 fps [8].  

 

Figure 1.4: An image sensor-based VLC system. 

Figure 1.4 shows a VLC system using an image sensor working at rolling shutter mode. The 

bright bars captured by the image sensor correspond to the transmitted data 1 and the dark bars 

correspond to the transmitted data 0. Then at the receiver side, the CMOS image sensor on the 

smart phone captures the pixel from top to bottom [7], extracts the rolling shutter patterns by 

image processing and decodes the rolling shutter patterns. 

LED

Smart phone
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1.3 Applications of VLC Systems 

According to application scenarios, VLC technology can be divided into indoor and outdoor 

applications. Driven by the success of the Li-Fi concept [9], indoor VLC has attracted more 

interest and achieved higher growth. However, due to more crucial environments and strict 

constraints, such as regulation, mobility and weather, outdoor VLC has been developed at a 

lower speed, but still have achieved significant results.  

1.3.1 Indoor VLC Systems 

As a part of image sensor-based VLC, screen to camera communication (SCC) can provide 

high-reliability and high-flexibility short-range communication services, and therefore has 

gained much interest from both industry and academia [10]. SCC systems encode data bits into 

images and then display the images on a liquid crystal display (LCD) screen, such as a 

smartphone or laptop screen, as shown in Figure 1.5. At the receiver side, the user will use a 

camera to record the images and then decode the data blocks. 

 

Figure 1.5: Transceivers of SCC systems. 

An SCC system based on 2D color barcode, called COBRA: Color Barcode stReaming for 

smArtphones, is proposed in [10]. In a COBRA system, the transmitted data is divided into 
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consecutive frames. In each frame, the data stream is further divided into ℎ×𝑤 data blocks 

and modulated by COBRA color code, where ℎ is the column number of the data blocks and 

𝑤  is the row number of the data blocks. Each block occupies 𝑏𝑠 ×𝑏𝑠  pixels, where 𝑏𝑠 

represents the block size (BS) and is mapped to certain color in the color code modulation 

method. Figure 1.6 shows an example frame in a COBRA system encoded in four colors (white, 

red, green and blue). Additionally, four corner trackers, which are blocks in black surrounded 

by eight blocks in the same color of red, green or blue, are added on the corners of each frame 

to help determine the orientation of the captured image at the receiver side. Furthermore, four 

timing reference blocks, which are black blocks surrounded by eight white blocks, are added 

on the margin of the image and used to determine the location of the color data blocks. Then 

all the ℎ×𝑤 color data blocks, four corner trackers and four timing reference blocks will form 

one image and display at the transmitter screen as shown in Figure 1.6. 

 

Figure 1.6: An example for a 2D COBRA barcode. 

Unfortunately, due to the broadcast property and visual nature of display screens, SCC 

systems are subject to eavesdropping and malicious attack, especially in public venues, such 

as supermarkets and shopping malls. This vulnerability has led to a number of recent studies 

into the security of SCC systems. A physical security enhancement method for barcode-based 

h columns

w rows

1 block   
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SCC systems was proposed in [11]. It can realize secure communication by manipulating 

screen view angles and leveraging user-induced motions. Kaleido precodes the distortion in the 

video to prevent unauthorized video recording while maintaining the viewing quality of human 

eyes [12]. In [13], three secure communication schemes for SCC systems were proposed and 

all three methods require strict synchronization. A color shift-based secret key distribution 

scheme was proposed in [14]. A covert SCC system was proposed to embed user data into a 

video and realize simultaneous display and communication on the screen in [15]. The system 

can only achieve a 10−1-level bit error rate (BER) when the block size is up to 60 px. An 

upgraded color barcode scheme for secure transmission in SCC systems was proposed in [16] 

to improve the throughput based on an advanced smartphone screen and a camera with high 

resolution. A screen camera-based secure short-range communication system was proposed in 

[17]. It achieves secure communication links with the aid of the color shift and perspective 

distortion characteristics of the SCC channel. Leveraging the color shift property over screen-

to-camera channel, two key distribution methods was proposed in [18].  

Furthermore, location-based services have seen incredible expansion in recent years. Indoor 

VLC systems can also be used for precise positioning, which is also called visible light 

positioning (VLP) and will be detailed in CHAPTER 2. 

1.3.2 Outdoor VLC Systems 

Existing researches on outdoor VLC systems mainly focus on Intelligent Transportation 

Systems (ITS), including vehicle to vehicle (V2V) [19] and vehicle to infrastructure (V2I) [20] 

systems. By enabling VLC technology on mobile devices and integrate it with smart street 

lighting modules, the high-precision positioning and high-speed data rate performances of VLC 

technology and the wide distribution of street lightings can intensely contribute to the 

implement of diverse public services. Furthermore, in-vehicle network applications can 

leverage VLC-enabled lighting modules and traffic infrastructure to implement Vehicular VLC 

[21]. 

 However, outdoor applications face more challenges due to the strong ambient light 

disturbance [22] and optical defects in lens. The power of the incident parasitic light can be up 
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to 10 mW/cm2, compared to the power of the light containing the information which can be as 

low as few μW/cm2. Meteorological phenomena such as rain, snow, fog, and other particles in 

the atmosphere scatter and absorb light beams, thereby reducing the quality of VLC signals 

[23]. Furthermore, the accumulated dirt or ice over the transceivers of outdoor VLC systems 

will obstruct the transmitted signals. These blockages severely affects the reliability, robustness 

and transmission distance of outdoor VLC. In addition, ice on the road and pavement leads to 

stronger reflections. Addressing and solving these challenges enables VLC technology in 

outdoor application and leads to the perspective of fully exploiting the advantages of VLC [22]. 

1.4 Related Works 

Recently, VLC has attracted increasing attention from academia and industry and the 

number of research works, including exhaustive surveys, on this topic has grown exponentially 

[3]. The very first work that utilized LEDs to provide illumination and communication services 

in indoor scenarios as proposed by the scholars from Keio University in Japan in 2000 [24]. In 

2003, the Visible Light Communication Consortium (VLCC) was founded in Japan, and VLC 

technology for mobile devices and vehicles has been rapidly developed.  

In addition, standardization work has been carried out by the Japan Electronics and 

Information Technology Industries Association (JEITA) and the IEEE Standards Association 

(IEEE-SA). In 2007, VLCC introduced two standards given by the visible light communication 

system standard and the visible light ID system standard. Then JEITA accepted these two 

standards in the forms of JEITA CP-1221 [26] and CP-1222 [27], respectively. In 2011, IEEE-

SA developed the first IEEE standard for VLC given by IEEE 802.15.7 [25] to define the 

physical layer (PHY) and medium access control (MAC) layer design specifications. 

At the same time, VLC-enabled infrastructures from companies, such as pureLiFi, Philips, 

Oledcomm, have appeared on the market and are deployed in domestic and industrial buildings 

[28]. 



9 

 

1.5 Thesis Organization 

The rest of the thesis is organized as follows. The design of a VLC transmitter system is 

discussed in Chapter 2. A universal VLC modulator design is presented that is integrated with 

Bluetooth-based wireless connectivity and supports various LED lighting and a wide range of 

input power for LED drivers. Chapter 3 describes the use of a smartphone camera as a receiver 

and characterizes the performance of the communication link with respect to various types of 

lights, colors and smartphone models. Chapter 4 is focused on smart lighting and display 

applications of VLC. A smart LED lighting installation and control system is presented, 

followed by the implementation of OCC in LCD displays. Chapter 5 describes the 

implementation of a high-accuracy indoor positioning system using the transceiver system built 

in previous chapters. Finally, Chapter 6 concludes the thesis and gives an overview of future 

work. 
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CHAPTER 2 Visible Light Positioning Systems 

2.1  Positioning Technologies 

In outdoor scenario, global positioning system (GPS) is widely used to provide location-

based services. GPS uses satellite as transmitter to acquire the position of airplanes, 

automobiles and portable devices. A GPS receiver locate four or more satellites and calculate 

the distance to each satellite to infer its own position. GPS calculates the distance by measuring 

satellite electronic clock, and determine the location of receivers through triangulation method 

[1], based on which only three satellites are needed to estimate the position of a GPS receiver. 

However, the result is not accurate due to the error of the clock. The fourth satellite is used to 

estimate the related position to the three satellites to reduce the positioning error. Several 

studies focused on improving the positioning accuracy of GPS system, such as differential GPS 

(DGPS) [2] and GPS roadside integrated precision positioning system (GPSIPPS) [3]. However, 

these systems require high-cost receivers. 

In more complex indoor environments, GPS can not achieve high-robustness positioning 

performance due to multipath propagation, signal blockage and attenuation [4]. Indoor 

positioning has become a difficult task, and there is no universal solution for all operations [5]. 

Radio frequency (RF) sensors can help enhance the positioning performance in indoor scenes. 

Under the consideration of the cost of large-scale employment, Wi-Fi, Bluetooth, radio 

frequency identification (RFID) are the most common used indoor positioning technologies. 

Wi-Fi-based indoor positioning system (IPS) was first proposed by Microsoft Research using 

received signal strength (RSS) method [6], which measures the signal strength between the 

receiver and multiple access points to estimate the distance using propagation model. 

Afterwards, most Wi-Fi-based IPS uses fingerprint method. The fingerprint method is also 

based on RSS, but it stores this knowledge in the database and compares it with the known 

positions of the receivers. However, it is challenging to achieve high-accuracy positioning 

results exclusively due to multipath effect [7].  
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iBeacon is a protocol proposed by Apple based on Bluetooth Low Energy (BLE) devices 

and aimed to push notifications to nearby visitors via mobile applications when they are 

approaching the BLE devices [8]. BLE devices broadcast their identifier (ID) to nearby mobile 

devices to achieve position acquiring and tracking. Compared with traditional Bluetooth, BLE 

requires lower power consumption, lower cost and less amount of data to be transmitted 

periodically.  

As a cost-effective item serialization wireless technology, RFID is widely applied in retail 

scenarios and RFID-based sensing network focuses on providing location-based cloud services 

[9]. RFID reader and RFID tag are two basic components in RFID systems. RFID tags contain 

antenna-based transceivers and integrated circuit (IC) for RF signal modulation [10]. RFID 

tags are always attached to objects to be located by RFID readers. RFID readers transmit power 

to RFID tags, so there is no batteries in a RFID tag. As the signal strength of RFID system is 

essentially influenced by noise, multipath effect, and antenna interference, the arrangement of 

RFID tags is still a challenging task. Support vector machine (SVM) technology can be applied 

to RFID-based IPS to improve the positioning precision [11]. As described above, different 

indoor positioning technologies have different features and different applications. The 

summary of different RF-based IPSs [12] is given in Table 2.1.   

Table 2.1: Summary of RF-based IPS [12]. 

Technology Coverage Accuracy Scalability Cost Power Consumption 

GPS 16 km 6-20 m Low High High 

Wi-Fi 35 m 1-5 m Medium Medium  High 

Bluetooth 10 m 1-5 m High  Low Low 

RFID 1 m 1-2 m Medium Low  Low 

Non-RF technologies can also realize localization, such as magnetic positioning, pedestrian 

dead reckoning (PDR) and image-based positioning. A magnetic positioning system usually 

measures magnetic field strength from a permanent magnet to a magnetic sensor, which is 

usually employed for intelligent industrial applications, such as automobile shift detection, 

wheel speed sensing [13]. It has multiple advantages including high reliability, high positioning 
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accuracy and low manufacturing cost. A practical magnetic system design must analyze the 

influence of stray field, ferromagnetic environment, limited installation space, required 

resolution, compensation of manufacturing tolerance, leading to high mathematical challenges 

[14].  

PDR technology calculates the number of steps based on the built-in sensors of mobile 

devices to estimate people’s positions [15]. It can only achieve coarse positioning accuracy 

because it is challenging to precisely estimate the exact step size of the pedestrian and heading 

direction. The walking mode and step size of the pedestrians are varying and the heading 

direction measured by compass is sensitive to around electrical devices. Therefore, other IPS 

technologies are applied to PDR-based positioning systems to estimate the accumulated errors, 

such as Wi-Fi, Bluetooth, magnetism or acoustics. 

Among the above technologies, VLP technology is very competitive in providing indoor 

localization services due to its high availability, high bandwidth, low cost and long lifetime. 

VLP signals cannot penetrate through walls, ceilings and other obstructions inside buildings. 

Thus, different VLP systems will not cause interference to each other and the signals in 

different rooms are independent and private. VLP technology provide positioning with 

centimeter-level accuracy and illumination for large smart manufactories, high-rise buildings, 

densely populated shopping malls and underground environments. It is noteworthy that VLP 

systems are scalable especially for multi-floor buildings and can make the two positioning 

systems for robots and mobile devices, respectively, share the same map and achieve 

positioning on the same map. 

2.2 VLP System Configuration  

2.2.1 PD-based VLP Systems  

The most conventional transceiver in PD-based VLP system consists of one PD as receiver 

and multiple LEDs as transmitters. An example of a single PD-based VLP system with four 

LEDs as transmitters is illustrated in Figure 2.1. As shown in Figure 2.1, a PD-based receiver 

is placed on the receiver plane and four LEDs are mounted on the ceiling. Four LEDs transmit 
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different signals given by 𝑓1, 𝑓2, 𝑓3 and 𝑓4. Then at the receiver side, the RSS, the time of 

arrival (TOA) or the angle of arrival (AOA) will be measured. 

 

 

Figure 2.1: An indoor VLP system based on a single PD and four LEDs. 

RSS-based positioning system is easily employed without the need for any complementary 

equipment except for a single PD and multiple LEDs. Therefore, it is more cost-effective than 

TOA -based VLP systems which require additional devices to estimate time. In a RSS-based 

VLP system, the target location can be estimated by the received direct current (DC) signal 

strength or the output alternating current (AC) signal strength of the PD. However, both of 

these methods have potential shortcomings that received DC signal strength-based systems are 

sensitive to DC measurement error caused by ambient light and output AC signal strength-

based systems require perfect transceiver parameters [16]. Many conventional algorithms can 

be applied to RSS-based VLP system, including trilateral evaluation [16], fingerprint 

perception [17] and proximity [18].  

In addition, a time difference of arrival (TDOA)-based VLP system measures the traveling 

time of the light wave from the LED-based transmitters to the PD-based receiver. It requires at 

least three LEDs to achieve 2D positioning and four LEDs to realize 3D positioning. However, 

precise time synchronization between the LEDs and the PDs is a prerequisite, which will 
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increase the manufacturing cost of the system. With the help of multiple LEDs modulated with 

frequency division multiplexing (FDM) and band pass filter (BPF) applied on the receiver side 

[19], a single PD can collect optical signals independently and measure the time difference 

between the signals, which facilitates the practical implementation of TDOA-based VLP 

system.  

An AOA system measures the direction of propagation of the light signal incident on the PD. 

In an AOA-based VLP system, the PD-based receiver is surrounded by multiple sector LEDs 

with limited field of view (FOV) [20]. The position of the PD can be approximately estimated 

using AOA method, when at least two optical signals from different transmitters are received. 

By mounting more LEDs in the AOA-based VLP system, higher positioning accuracy can be 

achieved. Table 2.2 summaries the features of the PD-based VLP systems using different 

positioning methods [12]. 

Table 2.2: Comparison of different PD-based VLP systems [12]. 

Positioning Methods Accuracy Cost Power Consumption Multipath Effect 

RSS Medium Medium Low Yes 

TDOA High High Low Yes 

AOA Medium Low High Yes 

2.2.2 Image Sensor-based VLP Systems 

A smart phone based-VLP system consists of an LED based transmitter and the image sensor 

as receiver. The front-end design of the VLC encoding and decoding is illustrated in Figure 2.2. 

The LED is controlled by a VLP enabled LED driver to transmit optical waveforms. Then at 

the receiver side, the CMOS image sensor on the smart phone works at rolling shutter mode 

and the pixel rows are to be captured from top to bottom [23]. Thus, as long as the data rate of 

the LED is modulated higher than the frame rate of the smart phone, the transmitter signals 

will be recorded as the rolling shutter patterns on the image sensor. To present straightforwardly, 

we assume that the transmitter applies on-off keying (OOK) modulation. Bright and dark bars 

correspond to transmitted data 1 and 0 as illustrated in Figure 2.2(b). The LED is first turned 

off, which results in a lower intensity output on the first-column pixels at the receiver camera 
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side. Then the LED driver control the LED by switching it to the on state, which will be 

recorded as the higher intensity output on the second-column pixels. Therefore, expert 

guidance is required when setting up a VLP system. In the proposed VLP system, the receiver 

camera works at rolling shutter mode to achieve a higher data rate by reading the PD matrix in 

the camera column by column compared with that working at global shutter mode. After 

scanning all columns, the image sensor-based receiver will convert all the columns on the 

resultant image into binary data. By working at the rolling shutter mode, the image sensor-

based VLP system can achieve multi-kbps throughput. Therefore, rolling shutter processing 

can be used to increase the data rate. The image sensor-based receiver decodes the patterns 

based on threshold. After adding a preamble and error check sequence, the decoded binary 

sequences will consist a data frame with unique ID and then the ID is mapped to a uniform 

resource identifier (URI) database and read by the application software [22]. 

 

Figure 2.2: Block diagram of a smart phone based VLC system illustrating (a) transmitter 

side and (b) receiver side [22]. 
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To acquire the position of an object, an image sensor-based VLP system usually relies on an 

auxiliary magnetometer to estimate the azimuth angle. In [21], a double image sensors-based 

VLP system without angle estimation is proposed, where two equivalent image sensors are 

placed horizontally with the same height and trilateral evaluation is applied. However, double 

image-sensors-based VLP systems require high cost and additional arrangement. Therefore, 

VLP systems based on a single image sensor is widely studied. 

2.3 VLP Technology Applications 

2.3.1 Location-aware Services  

It is easy to get lost for humans in indoor public environments, such as shopping malls, 

airports, museums and exhibition centers. Location-aware services will be a precious asset to 

lead the way for us to our areas of interest [24]. Since LED lightings are already mounted in 

these public areas for illumination, VLP systems can be easily facilitated based on the existing 

lighting infrastructures. It is noteworthy that certain adjustment must be added to the original 

equipment manufacturers (OEMs) of the LEDs to generate VLC signals. The VLP-enabled 

smartphones or other mobile devices can demonstrate the information of the around exhibitions, 

the advertisement of nearby stores and guide people to the nearest toilet, elevator or ATM. In a 

multi-story building, VLP can even achieve 3D positioning by encoding the 3D locations in 

the LEDs. In addition, if certain area is getting overcrowded, especially for pandemic control 

under covid-19, VLP systems can help the staffs to regulate the flow of people.  

2.3.2 Robotics Navigation and Localization 

In recent years, Industry 4.0 is revolutionizing the way manufactories product goods. To 

meet the demanding challenge of the Industry 4.0 application requirement, increasing amount 

of RFID devices, wireless networks and sensors are integrated in the smart manufacturing and 

logistics distribution centers. Mobile robots are also assembled on production lines to realize 

manufactory automation. However, the communication reliability is limited due to some 

potential problems of indoor wireless communication systems, such as multipath propagation, 

shadow effect, signal attenuation and interference [25]. In addition, most of existing industrial 
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mobile robots are heavily limited to predetermined and fixed route without the capability of 

intelligent positioning and self-navigation.  

In intelligent manufactories and industrial logistics centers, VLP technology can be applied 

to navigate mobile robots to improve work efficiency when they are controlled to conduct 

resource allocation and regulate repository management [26]. Beyond Industry 4.0, Industry 

5.0 is projected to extend the capability of multi-robot collaboration and human-machine 

cooperation and interaction, as shown in Figure 2.3. In addition, by encoding different LEDs 

with different IDs, VLP systems can cover the entire workshop to provide scalable location-

based services and navigate the robots to handle dynamic tasks by rearranging the navigation 

paths and destinations for robots. Besides industrial environments, mobile service robots are 

also widely used in public places, such as museums, airports, shopping malls and hospitals to 

realize information display, path guide, ward patrol and room cleaning. 

 

Figure 2.3: Diagram of a common indoor VLP system with multiple mobile robot 

collaboration and human-robot cooperation under based on ceiling mounted LED lightings. 

Nowadays, Simultaneous Localization and Mapping (SLAM) technology has been 

considered as the key for robots to achieve autonomous positioning and navigation, which was 
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first proposed by John J. Leonard and Hugh F. Durrant-Whyte in 1992 [27]. SLAM is mainly 

used to solve the problems of positioning, navigation and map construction when mobile robot 

runs in an unknown environment and provides various services, such as food delivery, shopping 

guide and bank self-service. Table 2.3 illustrates several key benefits of VLP technology in 

mapping, deployment, and robustness when compared with current SLAM-based positioning 

methods. 

Table 2.3: Advantages of VLP in comparison to SLAM-based positioning systems. 

Approach VLP SLAM 

Mapping 

process 

Do not require scanning of venue Require scanning and survey for 

positioning 

Map share Just the building floorplan in BIM 

with lights' location is enough 

Challenging to share the same map 

between different robots 

Equipment Modulated LED  Sophisticated and high-cost sensors 

Scalability Global 3D  Local 2D/3D  

Environment 

dependency 

Not based on features Poor performance in repeatable 

feature environment and featureless 

area 
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CHAPTER 3 High-Accuracy Indoor VLP Systems for Mobile Devices 

3.1 Introduction 

With the growing demand for location-based services such as indoor navigation, robot 

control and object tracking, indoor positioning technology has attracted increasing attention 

from both academia and industry. For outdoor environments, the Global Positioning System 

(GPS) provides real-time positioning services based on satellites and is widely used in airplanes, 

automobiles and portable devices. However, it cannot realize efficient positioning in indoor 

environments because satellite signals will be extremely attenuated and interrupted by indoor 

obstacles [1]. Currently, wireless technologies, including Bluetooth [2] and WiFi [3], are 

widely applied to indoor positioning systems. However, these technologies can only achieve 

meter-level accuracy [4] and are potentially vulnerable to malicious activities [5]. Visible light 

positioning (VLP) technology can solve these problems, with multiple advantages including 

centimeter-level accuracy, compatibility with existing lighting infrastructure, low cost and 

insusceptibility to electromagnetic interference. Therefore, VLP systems are very competitive 

to provide indoor positioning service. 

VLP systems use light emitting diodes (LEDs) as transmitters and have two different types 

of receivers, image sensors and photodiodes (PDs). The detection areas of PDs are very small. 

Thus, precise alignment between the transmitter and a PD-based receiver is required for signal 

detection [6]. Compared with PDs, image sensors are more widely incorporated into mobile 

devices, promoting their universal deployment. Additionally, a lot of work has been done on 

smartphone camera-based visible light communication (VLC) [7] and robot camera-based 

VLC [8]. In an image sensor-based VLP system, the LED-based transmitter is controlled by a 

VLC-enabled LED driver to transmit optical waveforms and the CMOS image sensor works in 

rolling shutter mode [9]. The receiver decodes the patterns based on a threshold, and the 

decoded binary sequences will consist of a data frame with unique identification (ID) and be 

mapped to a uniform resource identifier (URI) database [10]. 
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In this chapter, we propose a tilted receiver camera correction and partially blocked LED 

image compensation algorithm to realize high-accuracy positioning for VLP systems. The 

proposed positioning method is based on a single LED, and the additional positioning error 

caused by tilted receiver is corrected by the rotation angles estimated by the sensors on the 

smartphones. Additionally, the LED-based transmitters are modulated with digital IDs 

containing the information of the LEDs’ world coordinates. Therefore, the positioning method 

is scalable, with no maximum scale limit. For example, in a multi-floor multi-room building, 

by encoding the LEDs in different rooms on different floors with different IDs, VLP systems 

can provide 3D positioning in the venue. The proposed VLP system can also provide 

positioning services even when an incomplete LED image is captured by the camera. Two 

different methods are proposed to find the geometric features when only part of the LED curve 

is shown on the captured images. With these methods, the robustness of the VLP system is 

enhanced. We finally present experiments to verify the effectiveness of the proposed VLP 

methods and analyze the performance. 

The chapter is organized as follows. Related work is introduced in Section 3.2. The proposed 

tilted receiver camera correction method for VLP systems is introduced in Section 3.3. In 

Section 3.4, we present the details of the proposed partially blocked LED image compensation 

method. Experimental results are provided and analyzed in Section 3.5. Finally, Section 3.6 

concludes this chapter. 

3.2 Related Works 

During recent years, a significant amount of work has been done on VLP systems using 

image sensors as receivers. A novel VLP system based on an event-based neuromorphic vision 

sensor was proposed in [11]. It achieves positioning error lower than 3 cm when the height 

between the LEDs and the event camera is within 1 m. However, it is noteworthy that most of 

the existing image sensor-based VLP systems have an assumed prerequisite that the image 

sensor must be placed horizontally, i.e., parallel with the ground. However, in realistic scenarios, 

smartphones held in the human hand arbitrarily rotate about the x-, y- and z-axes, and rotation 

correction methods have to be applied to suppress additional positioning errors induced by the 



27 

 

tilt angles. A novel sensor fusion method was presented in [12], which proposes to collect the 

tilt angle data from the sensors (accelerometer and gyroscope) on a smartphone and suppress 

the errors caused by the rotation, and the average positioning error is 4.3 cm. An image sensor 

noise degradation mechanism was proposed in [13], and it uses an accelerometer to measure 

the tilt angles. The average positioning error is 10 cm when the distance from the LED and the 

image sensor is 3.5 m. A machine learning method for tilt angle correction was proposed in 

[14]. Because different tilt angles lead to different characteristics of the LED image, it used 

neural networks to establish the relationship between the LED image characteristics and the 

distance between the receiver and the transmitter and correct the error induced by tilted angles, 

and the average positioning error can reach 1.9 cm. However, the VLP methods proposed in 

[12-14] use multiple LEDs, which requires the LEDs to be placed at high density. Therefore, 

to add less tense requirements to the venue to be perceived, single LED-based VLP system is 

considered in this thesis. A single-LED VLP system with a marker on the LED was proposed 

in [15], which uses the geometric features of the captured LED images to correct the tilt angles 

of the camera. However, the x-y plane average 2D positioning error can reach 17.52 cm. A 

sensor-aided single-LED VLP system was proposed in [16], which relies on the geomagnetic 

field sensor and accelerometer on a smartphone to estimate the rotation angles, and thereby 

reduce the positioning error caused by the rotation. However, it only provided the experimental 

results when the camera is placed directly below the LED and the mean positioning error is 

about 10 cm when the distance between the LED and the camera is 2.4 m. An orientation 

calibration method for a single LED-based VLP system was proposed by [17]. However, its 

average positioning error reaches up to 11.2 cm at the experimental scale of 1.8×1.8×1 m3. A 

geometric feature-based planes intersection-line scheme was proposed in [18] and it can 

achieve the average positioning error of 5.58 cm in the experimental scale of 2.7×1.8×1.45 

m3. However, all of the above VLP methods can achieve high precision when a complete LED 

image is captured. 

A further challenge of VLP systems in practical scenarios is that the cameras are not always 

able to capture complete LED images. For example, when a camera is placed on the margin of 
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the field of view (FOV), it can only capture an incomplete LED image. Additionally, when 

someone is standing below the LED and holding a camera to seek his location, his head 

partially blocks the LED light. Similarly, when a robot is controlled to track an object in an 

intelligent manufactory, it may move under tables or shelves and the furniture will partly 

obstruct the LED light. The resulting incomplete captured LED images will lead to additional 

positioning error and degrade the robustness of VLP systems. Furthermore, due to a limited 

FOV, a VLP method based on incomplete LED images can achieve positioning on the margin 

of the FOV, and can therefore extend the positioning area. By combining a tilted receiver 

camera, compensation on incomplete LED images can preserve a stable positioning 

performance on the margin of the extended positioning area. A VLP method based on the mean 

shift algorithm and unscented Kalman filter was proposed in [19], which enhances the 

robustness of the VLP system. The accuracy is maintained even when half of the LED is 

blocked. A Camshift algorithm combined with Kalman filter was proposed in [20] to realize 

good robustness. However, neither of them considered the positioning error caused by tilted 

receiver cameras. 

3.3 Arbitrarily Tilted Receiver Camera Correction Method for VLP Systems 

The diagram of the proposed single circular LED-based positioning method is given in 

Figure 3.1. In the proposed indoor VLP system, the LEDs are modulated with unique digital 

IDs containing their own position information, which is stored in a database. The LEDs 

broadcast their IDs repeatedly. A user holds a smartphone and the front camera captures images 

of a LED periodically. Then two procedures are executed. The first is to decode the rolling 

shutter patterns shown on the captured images, find the unique ID of the LED and then obtain 

the world coordinates of the LED. The other is to detect the boundary of the LED on the 

captured images and then compute the translation matrix of the camera. The system will also 

estimate the tilt angles using the sensors on the smartphone and thereby compute the rotation 

matrix of the camera. Finally, the world coordinates of the camera will be determined. 
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Figure 3.1: The proposed tilted receiver camera correction method for a single-LED-based 

VLP system: (1) finding the LED’s world coordinates, (2) computing the camera matrices. 

3.3.1 Camera Model and Imaging Geometry 

 

Figure 3.2: Imaging geometry of a single-LED-based VLP system with a tilted camera. 

When an image sensor captures a picture of an object, the 3D world coordinates (𝑋𝑊, 𝑌𝑊, 

𝑍𝑊) of the object are projected to 2D pixel coordinates (𝑢, 𝑣), as shown in Figure 3.2. In the 
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projection procedure, the world coordinates are firstly converted to camera coordinates (𝑋𝐶, 

𝑌𝐶, 𝑍𝐶). Then the 3D camera coordinates are projected to 2D image coordinates (𝑥, 𝑦) on the 

image plane and finally converted to 2D pixel coordinates (𝑢, 𝑣). The proposed VLP system 

realizes navigation by establishing a mapping between the world coordinates and 

corresponding pixel coordinates.  

The camera model describes the mapping from 3D world coordinates to 2D pixel 

coordinates and is realized by a multiplication of a 3× 4 intrinsic matrix 𝑷𝒊𝒏  and a 4× 4 

extrinsic matrix 𝑷𝒆𝒙. The intrinsic matrix describes the camera’s internal parameters, and the 

extrinsic matrix describes the camera’s location and direction in the world coordinate system 

given by   

 𝑷𝒊𝒏 = [
𝑓𝑥 𝛾 𝑢0 0
0 𝑓𝑦 𝑣0 0

0 0 1 0

], (3-1) 

 𝑷𝒆𝒙 = [
𝑹 𝑻
𝟎 1

], (3-2) 

where (𝑢0, 𝑣0) are the pixel coordinates of the principal point, namely, the center of the image, 

𝛾 is the skew coefficient between the x- and y-axes, often 0, 𝑓𝑥 is the focal length of the x-

axis in terms of pixels, 𝑓𝑦 is the focal length of the y-axis in terms of pixels, 𝑹 is the 3×3 

rotation matrix and 𝑻 is the 3×1 translation matrix. The intrinsic matrix can be obtained via 

camera calibration [21]. Using these parameters, the projection mapping from world 

coordinates (𝑋𝑊, 𝑌𝑊, 𝑍𝑊) to pixel coordinates (𝑢, 𝑣) can be described as  

 𝑧𝑐 [
𝑢
𝑣
1
] = [

𝑓𝑥 𝛾 𝑢0 0
0 𝑓𝑦 𝑣0 0

0 0 1 0

] [
𝑹 𝑻
𝟎 1

] [

𝑋𝑊

𝑌𝑊

𝑍𝑊

1

], (3-3) 

where 𝑧𝑐 is the scaling factor. 

The translation matrix in (3-2) consists of the translation of the camera on the x-, y- and z-

axes, respectively, given by  

 𝑻 = [

𝑥0

𝑦0

𝑧0

].  (3-4) 
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The rotation matrix in (3-2) is the multiplication of the three rotation matrices describing 

the rotation of the z-, x- and y-axes, respectively, given by  

 

𝑹 = 𝑹𝒛(𝜑𝑧)𝑹𝒙(𝜑𝑥)𝑹𝒚(𝜑𝑦)

= [
cos𝜑𝑧 sin𝜑𝑧 0
sin𝜑𝑧 cos𝜑𝑧 0
0 0 1

] [
1 0 0
0 cos𝜑𝑥 sin𝜑𝑥

0 −sin𝜑𝑥 cos𝜑𝑥

]

× [

cos𝜑𝑦 0 sin𝜑𝑦

0 1 0
sin𝜑𝑦 0 cos𝜑𝑦

] ,

 (3-5) 

where 𝜑𝑧  is the azimuth angle between the y-axis and true north, 𝜑𝑥  is the pitch angle 

describing the rotation about the x-axis and 𝜑𝑦 is the roll angle describing the rotation about 

the y-axis, as illustrated in Figure 3.3.  

 

Figure 3.3: Rotation angles of a smartphone along x-, y- and z-axes.   

3.3.2 Tilted Receiver Camera Correction Method 

When a circular LED is mounted on the ceiling and the image sensor is placed horizontally, 

that is, the image plane is parallel with the ground, a circular LED image will be captured. 

However, when the image sensor is rotated about the x-, y- or z-axis, an elliptical LED image 

will be received. Therefore, LED images captured at the same position may present different 

geometric features. Fig. 4 shows four images captured at the same position but with different 

rotation angles. When the tilt angle changes, the pixel coordinates of the LED image and the 

major and minor axes of the elliptical LED image will also change.  
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Figure 3.4: Images captured at the same position with different rotation angles: (a) 𝜑𝑥 =

0𝑜, 𝜑𝑦 = 0𝑜; (b) 𝜑𝑥 = 15𝑜, 𝜑𝑦 = −9𝑜; (c) 𝜑𝑥 = 17𝑜, 𝜑𝑦 = 3𝑜; (d) 𝜑𝑥 = −20𝑜, 𝜑𝑦 =

−2𝑜. 

Since the proposed VLP method is based on smartphone images, we take advantage of the 

accelerometer and geomagnetic field sensor on the smartphone [22], to directly and promptly 

obtain the tilt angles. The tilt angles are available as the sensor application programming 

interface (API) through Android and iOS operating systems for mobile devices. Similarly for 

robots, these readings can be acquired from the inertial measurement unit (IMU). Then using 

the estimated rotation angles, namely, the pitch angle 𝜑𝑥, roll angle 𝜑𝑦 and azimuth angle 

𝜑𝑧, the rotation matrix 𝑹 given in (3-5) is determined. 

 

Figure 3.5: The image processing procedures of boundary detection: (a) original image, (b) 

binary image, (c) patterns eliminated, (d) detected boundary, (e) detected center in red and 

major axis in green. 
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To determine the geometric features of the LED image, the system has to detect the elliptical 

boundary curve in the captured image and the image processing procedures includes converting 

the original image to a binary image, deleting the rolling shutter patterns, detecting the 

boundary and estimating the ellipse center and major axis, as illustrated in Figure 3.5. The 

original RGB image, as shown in Figure 3.5(a), will firstly be converted to a grayscale image. 

Then the Sobel filter is applied to obtain a binary image, as shown in Figure 3.5(b). Since the 

rolling shutter patterns containing the unique ID of the captured LED are also detected, the 

pixels representing the patterns should be deleted by image processing steps, and the result is 

as given in Figure 3.5(c). As illustrated in Figure 3.5(c), a small number of the pixels on the 

rolling shutter patterns inside the elliptical boundary may not be deleted after the process. 

Additionally, the pixels on the boundary curve may be wrongly eliminated. Therefore, we 

further apply opening operation to exclude the pixels inside the LED boundary, and apply 

dilation operation to fill the boundary. Then, a complete LED boundary is obtained as 

illustrated in Figure 3.5(d). 

After finding the elliptical boundary curve, the next step is to determine the geometric 

features of the ellipse. Here, we propose a center searching method to find the geometric 

features of the detected ellipse, namely, the pixel coordinates of the ellipse center and the 

lengths of the major and minor axes. For each pixel in the image, we compute the maximum 

distance between the pixel and the ellipse boundary and then find the shortest maximum 

distance after searching all the pixels in the picture. The one with the shortest maximum 

distance is the center of the ellipse and the shortest distance is the length of semi-major axis. 

The detection results of the center and the major axis are illustrated in Figure 3.5(e). To further 

determine the minor axis of the ellipse, we draw a line starting from the center and vertical to 

the major axis, and find the intersection point of the boundary and the line. Then, the distance 

between the intersection point and the center is the semi-minor axis. 
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Figure 3.6: The pinhole camera model describing the relationship between the major axis 

length of the LED image and the distance between the LED and the camera. 

The scaling factor 𝑧𝑐  in (3-3) and the z-axial translation 𝑧0  in (3-4) can be calculated 

using the pinhole camera model [24]. Since the size of the LED is much smaller than the 

distance between the LED and the camera, the projection can be supposed as a weak 

perspective projection [15]. It is assumed that the distance between the camera and every point 

on the LED is the same. According to the pinhole camera model as illustrated in Fig. 6, the 

distance between the camera and the LED 𝑑 can be obtained by  

 𝑑 =
𝑑𝐿𝐸𝐷

𝑎
𝑓, (3-6) 

where 𝑑𝐿𝐸𝐷 is the diameter of the LED, 𝑓 is the camera focal length and 𝑎 is the major axis 

length of the detected ellipse. If we set the point on the ground directly below the LED as the 

origin of the VLP system, that is, the z-axial world coordinate of the LED 𝑍𝑊𝐿𝐸𝐷
 is equal to 

the height of the LED, then the z-axial translation 𝑧0  and the scaling factor 𝑧𝑐  can be 

determined as   

 𝑧0 = 𝑑 − 𝑍𝑊𝐿𝐸𝐷
,  (3-7) 

 𝑧𝑐 = 𝑍𝑊𝐿𝐸𝐷
− 𝑑. (3-8) 
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3.4 Partially Blocked Led Image Compensation Method for VLP Systems 

 

Figure 3.7: Incomplete LED images caused by a limited FOV, blockage of a human head 

and furniture. 

As described in Section 3.1, in realistic scenarios the camera may capture incomplete LED 

images due to a limited FOV, blockage by a human head or furniture, as shown in Figure 3.7. 

Explicitly, when the camera is placed on the margin of the FOV, only part of the LED light can 

be captured. Additionally, when someone is standing below the LED lamp and holding a 
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smartphone to seek his location, his head partially blocks the LED light. Similarly, when a 

robot is controlled to track an object, it may move under tables or shelves, and the furniture 

will partially obstruct the LED light. Therefore, we propose to realize positioning using 

incomplete LED images and further enhance the robustness of the single-LED-based VLP 

system. For LED images with a shadow, it is noteworthy that after detecting the boundary of 

the LED image, a step to delete the points not on the ellipse should be added before finding the 

geometric features. Otherwise, the curve projected by the shadow will also be detected after 

the image processing methods, leading to additional errors in determining the geometric 

features. Fig. 8 illustrates the detected shadow curve when the LED light is blocked by a human 

head. Here we delete the points on the shadow curve with the aid of the property that the points 

wrapped by the shadow curve are black. The first step is to find the midpoint of every two 

pixels on the detected curve and then delete the two pixels if the binary value of the midpoint 

is 0. After checking every pair of points on the detected curve, only those on the LED elliptical 

boundary curve are kept. 

 

Figure 3.8: The detected shadow curve caused by human head blockage. 

Since the center searching method described in Section 3.3.2 relies on finding the shortest 

maximum distance between all the pixels and the ellipse curve to determine the center, it may 

give poor performance when the major axis of the elliptical LED boundary is partially blocked 

by a shadow. Furthermore, Hough circle detection is widely used to find the radius and center 

[23]. However, the generalized Hough transform can only achieve high efficiency when a large 
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number of votes dropping in the correct elliptical boundary and then the right boundary can be 

directly detected, meaning that the elliptical boundary must contain enough points. Therefore, 

the efficiency of the generalized Hough transform relies on the quality and the number of the 

input points. Thus, we propose a boundary fitting method to compute the ellipse equation by at 

least five points on the incomplete elliptical boundary curve. The implicit equation of an ellipse 

is given by  

 𝐴𝑥𝑒
2 + 2𝐵𝑥𝑒𝑦𝑒 + 𝐶𝑦𝑒

2 + 2𝐷𝑥𝑒 + 2𝐸𝑦𝑒 − 1 = 0, (3-9) 

where (𝑥𝑒,𝑦𝑒) are the pixel coordinates of the points on the elliptical curve, 𝐴, 𝐵, 𝐶, 𝐷 and 

𝐸 are the parameters in the implicit equation to be determined.  

After solving for 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸, the pixel coordinates of the ellipse center (𝑥𝑒𝑐, 𝑦𝑒𝑐), 

the length of the major axis 𝑎 and the length of the minor axis 𝑏 can be determined by   

 𝑥𝑒𝑐 =
𝐵𝐸−𝐶𝐷

𝐴𝐶−𝐵2 ,  (3-10) 

 𝑦𝑒𝑐 =
𝐵𝐷−𝐴𝐸

𝐴𝐶−𝐵2 ,  (3-11) 

 𝑎 = 2√
2(𝐴𝑥𝑒𝑐

2 +𝐶𝑦𝑒𝑐
2 +2𝐵𝑥𝑒𝑐𝑦𝑒𝑐−1)

𝐴+𝐶+√(𝐴−𝐶)2+4𝐵2
,  (3-12) 

 𝑏 = 2√
2(𝐴𝑥𝑒𝑐

2 +𝐶𝑦𝑒𝑐
2 +2𝐵𝑥𝑒𝑐𝑦𝑒𝑐−1)

𝐴+𝐶−√(𝐴−𝐶)2+4𝐵2
.  (3-13) 

3.5 Experiment and Evaluation  

We build an experimental platform using a common circular LED luminaire and a Lenovo 

Android phone to verify the proposed VLP system, as shown in Figure 3.9. The experimental 

parameters and the camera options are summarized in Table 3.1. The experimental area is 

divided into a 50 cm × 50 cm grid size and 49 test points are selected. The smartphone is 

placed at these points and captures pictures. The tilted angle ranges about the x-, y- and z-axis 

are −40𝑜 ≤ 𝜑𝑥 ≤ 40𝑜 , −40𝑜 ≤ 𝜑𝑦 ≤ 40𝑜  and −60𝑜 ≤ 𝜑𝑧 ≤ 60𝑜 , respectively. For each 

point, the smartphone captures four pictures with different tilt angles and different blocking 

ratios to avoid accidental errors and cover all the tilted angle range. Both positioning error and 

positioning error rate (PER) performances are measured for comparison. The PER describes 

the ratio of the positioning error to the distance given by [16]  
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 𝑃𝐸𝑅 =
√Δ𝑋𝑊

2+Δ𝑌𝑊
2+Δ𝑍𝑊

2

√𝑋𝑊
2+𝑌𝑊

2+𝑍𝑊
2

∗ 100%,  (3-14) 

where (𝑋𝑊, 𝑌𝑊, 𝑍𝑊) are the actual world coordinates of the camera and (Δ𝑋𝑊, Δ𝑌𝑊, Δ𝑍𝑊) 

are the differences between the actual world coordinates and the estimated world coordinates 

using the proposed positioning methods. 

 

Figure 3.9: The experimental setup of the proposed single LED-based VLP system.    
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Table 3.1: Experimental Parameters  

Horizontal Area 3×3 m2 

LED Height 1.86 m 

LED Diameter 0.175 m 

Phone Model Lenovo PB2-690Y 

Camera Resolution 1920×1080 

ISO 100 

Exposure Time 1

3000
 s 

Tilted Angle Range −40𝑜 ≤ 𝜑𝑥 ≤ 40𝑜 

−40𝑜 ≤ 𝜑𝑦 ≤ 40𝑜 

−60𝑜 ≤ 𝜑𝑧 ≤ 60𝑜 

3.5.1 Performances of the Partially Blocked LED Image Compensation Methods 

 

Figure 3.10: The detection results of center searching method and boundary fitting 

method: (a) the original captured LED image, (b) the detection results, (c) the zoomed in 

detection results. 

Firstly, we compare the detection performances of the proposed center searching method 

and boundary fitting method. Figure 3.10 illustrates the estimated centers using the center 

searching method and boundary fitting method, respectively. The yellow curve is the detected 

curve after eliminating the shadow curve, showing that about 30% of the LED boundary is 
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captured. The red point is the ellipse center determined by the center searching method and the 

green line is the corresponding major axis. The blue point is the center estimated by the 

boundary fitting method and the blue curve is the fitting boundary. Since more than half of the 

LED image is blocked and the major axis of the elliptical boundary is not captured, the 

detection results of the boundary fitting method are more accurate than those of the center 

searching method. Therefore, the boundary fitting method can provide better robustness for the 

proposed positioning system. 

3.5.2 Performances of the Tilted Receiver Camera Correction and Partially Blocked LED 

Image Compensation Methods for a Single-LED VLP System 

 

Figure 3.11: The comparison of the positioning error performance based on LED images 

with different captured area ratios among the two proposed methods, the RSS-AOA method 

[16] and positioning without rotation correction. 

We measure the positioning error performances of the two proposed methods based on 

incomplete LED images and a tilted receiver in an experimental area of 2×2 m2 and compare 

the results with those of the received signal strength and AOA (RSS-AOA) method [16]. The 

positioning errors with different captured area ratios of the elliptical LED images are provided 
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in Figure 3.11. The captured area ratio is the ratio of the captured LED image area to the full 

LED image area. It can be seen from the figure that when no rotation correction is applied, and 

even when the full LED image can be captured, the positioning errors are higher than 50 cm. 

For the VLP methods with tilted receiver camera correction, the picture is mixed. When the 

captured area ratio is between 20% and 40%, that is, only about 20% to 40% of the LED image 

is shown, the positioning error of the proposed center searching method and RSS-AOA method 

[16] is generally higher than 100 cm. However, the positioning error of the proposed boundary 

fitting method is usually lower than 30 cm. This means that the proposed center searching 

method and the RSS-AOA method [16] are unable to realize positioning in this case, while the 

proposed boundary fitting method is able to provide coarse-precision positioning. When the 

captured area ratio is between 40% and 60%, the proposed boundary fitting method performs 

much better than the proposed center searching method and the RSS-AOA method [16], and 

when more than 60% of the LED image is captured, the performance of both the proposed 

center searching method and boundary fitting method is better than that of the RSS-AOA 

method [16]. When more than 90% of the LED image is captured, the average positioning 

errors of the center searching method and boundary fitting method can achieve 5.7 cm and 3.9 

cm, respectively. As mentioned in Section 3.1, the average positioning errors of the circle 

geometry method [15], projective geometry method [17] and planes intersection-line method 

[18] are 17.52 cm, 11.2 cm and 5.58 cm, respectively. Therefore, in ideal conditions when a 

complete LED images is captured, the average positioning error of our proposed center 

searching method is comparable to existing image sensor-based VLP methods and the proposed 

boundary fitting method is better than the existing methods, whereas the two proposed methods 

outperform all the other systems in practical situations when the LED light is partially blocked 

or it is on the edge of a captured image.  
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Figure 3.12: The comparison of average PERs based on LED images with different 

captured area ratios among the two proposed methods and the circle geometry method [15], 

RSS-AOA method [16] and projective geometry method [17]. 

Figure 3.12 illustrates the average PER at different intervals of the captured area ratio. As 

shown in the figure, when the captured area ratio is between 20% and 40%, compared with the 

proposed center searching method and the RSS-AOA method [16], the proposed boundary 

fitting method can achieve the optimal performance, with an average PER of about 20%. When 

the captured area ratio is higher than 40%, the average PER of the proposed boundary fitting 

method is lower than 4%. Both the proposed center searching and boundary fitting methods 

perform much better than the RSS-AOA method [16] when the captured area ratio is higher 

than 50%. Additionally, when the captured area ratio is higher than 80%, the two proposed 

methods can achieve an average PER lower than 6%. When a complete LED image is captured, 

the average PERs of the proposed center searching method and boundary fitting method are 

2.73% and 1.87%, respectively, much lower than these of the circle geometry method [15], 

projective geometry method [17] and RSS-AOA method [16]. As indicated in [4], the 

positioning errors of VLP systems using LEDs are among 10-35 cm in experiments. Therefore, 

we aim to achieve an average positioning error lower than 10 cm. Since we verify our proposed 
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positioning methods in a 2×2×1.86 m3 space, the expected average PER is aimed to be lower 

than 6%. Therefore, our two proposed methods can achieve comparable and even better 

positioning performance than existing approaches when a complete LED is captured, and 

surpass all the existing methods in combating the performance degradation caused by partially 

blocked LED light.  

 

Figure 3.13: Coverage extension of the proposed center searching method and boundary 

fitting method along the margin of FOV.   

Due to the limited FOV of the camera, if the smartphone is placed horizontally, the 

positioning area is limited to 2× 1 m2  when the height of the LED is 1.86 m. Since the 

proposed methods can still achieve robust positioning when the camera is tilted about the x-, 

y- and z-axes and even when an incomplete LED image is captured, our positioning area can 

be extended to 3×3 m2 at the same height of the LED. Thus, we evaluate the positioning 

performances on coverage extension of the two proposed methods in an experimental scale of 

3× 3× 1.86 m3  and compare the results with the RSS-AOA method [16]. We fix the tilted 

angles of the smartphone as 𝜑𝑥 = 0𝑜, 𝜑𝑦 = ±20𝑜 and 𝜑𝑧 = 0𝑜, and move the smartphone 

along the y-axis in the world coordinate system with the interval of 0.1 m and take four pictures 

at the same point. The origin is set on the ground, directly below the LED. Figure 3.13 

illustrates the average positioning error at different distances from the origin. When the distance 
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from the origin is shorter than 1.2 m, compared with the RSS-AOA method [16], both the 

proposed center searching method and boundary fitting method can provide better performance 

and effectively reduce the additional error caused by the tilted camera. When the distance from 

the origin is longer than 1.2 m, only incomplete LED images can be captured. In this scenario, 

the positioning error of the RSS-AOA method [16] goes much higher while the proposed 

boundary fitting method can still provide stable positioning service. When the distance is about 

1.5 m, namely, on the margin of the area of 3×3 m2, about 20% of the LED can be captured, 

the proposed boundary fitting method can still reduce the negative effect of incomplete LED 

images and tilted camera. It is noteworthy that the proposed boundary fitting method has better 

coverage extension performance, and thereby has less tense requirement on the density of the 

LEDs in the venue. 

3.6 Summary  

In this work, we propose a tilted receiver camera correction and partially blocked LED 

image compensation method for indoor VLP systems. The proposed VLP methods do not 

require the LEDs to be placed at high density and can eliminate the additional positioning errors 

caused by a tilted receiver camera in realistic scenarios. We propose two methods to detect the 

geometric features of the captured LED images, and the experimental results show that both 

methods perform better than the existing single LED-based VLP methods in ideal scenarios. 

Furthermore, the two proposed methods outperform the existing methods and can effectively 

suppress the performance degradation when an incomplete LED image is captured. Therefore, 

the proposed methods can provide stable positioning services and further improve the 

robustness of the VLP system. 
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CHAPTER 4 High-Accuracy Indoor VLP System for Robots 

4.1 Indoor Positioning for Robots 

With the high-speed evolution of wireless technologies and the high demand of mobile 

devices, indoor positioning technology has enjoyed expansive development prospects. In the 

interior of buildings, densely populated cities and underground environments, traditional 

outdoor positioning technologies such as Global Positioning System (GPS) have poor signal 

coverage and large positioning errors [1]. Moreover, compared with other radio wave 

positioning technologies such as WLAN (wireless LAN/Wi-Fi), radio frequency identification 

(RFID), Bluetooth, VLC-enabled positioning technology can theoretically provide higher 

positioning accuracy and does not produce any electromagnetic interference [2]. Visible light 

positioning (VLP) systems compile the transmitted position information into a modulated 

signal and modulate it to the driving current of light emitting diodes (LEDs). When the 

positioning terminal enters the illumination area, it will receive and recognize the optical 

signals transmitted by the LEDs through a sensor such as a photodiode (PD) or an image sensor, 

and resolve the unique identification (ID) information of the LEDs. Then the corresponding 

location information is determined in the map database.  

With the rapid development of artificial intelligence (AI) technology in recent years, the 

impact on the intelligent construction industry has continued to increase, and it has brought 

considerable changes in many subdivisions. Industry leaders represented by Country Garden 

and Evergrande have deployed a variety of robotic equipment in the new generation of 

intelligent construction projects, such as handling building materials, leveling the ground, 

building positioning, and so on. However, its level of intelligence is not very high. Although 

there is a huge demand for full-cycle inspection and quality assessment of indoor building 

quality on the market, there is no product solution that integrates autonomy, sampling, 

reconstruction modeling, and data analysis. This is also the point of rapid growth of the industry 

in the next 5-10 year. Considering the cost-effectiveness ratio, the model of using autonomous 

robots plus intelligent sensing equipment will be more than 5 times higher than that of 
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traditional manual labor, and is expected to drive tens of billions of market demand, so the 

research and implementation of this system is of great significance. Facing the urgent needs of 

the future development of the intelligent construction industry, intelligent robot equipment and 

intelligent detection technology have gradually become the most core basic reserve. The degree 

of system-level intelligence will directly determine the quality and efficiency of task 

completion, and indirectly reflect the difference in production value. Therefore, in order to 

solve the bottleneck caused by the above problems to industry applications, this project 

proposes a fusion integrated solution based on a mobile robot platform and VLC co-location 

technology. VLC technology is used to improve the positioning ability of the mobile robot 

platform, so that it has accurate autonomous operation capabilities. 

4.2 Related Works 

4.2.1 Position Estimation of Robot 

In a robot positioning system, there are two types of sensors [3]. One is onboard sensors, 

which adhere to the robot body, such as the odometer and IMU. These sensors measure the 

robot’s linear and angular velocities and accelerations with a high updating rate, and predict its 

position and orientation by previous measurement. An indoor positioning system based on 

wheel odometry is proposed in [4] by fusing the readings from an encoder, gyroscope, and 

magnetometer using a self-tuning Kalman filter coupled with a gross error recognizer. IMU-

based inertial navigation is an important positioning technique in robot localization as it works 

autonomously. They present the benefit of high short-term accuracy and great anti-interference 

ability. However, inertial navigation has a major drawback of not able to provide long-term 

accurate positioning because of the cumulative positioning error increases over time. In [5], 

two IMUs are used to estimate the position, and the positioning performance is improved by 

the complementation of the relative relationship. The average positioning accuracy is lower 

than 20 cm over short periods of time. However, since the onboard sensors are subject to time-

dependent integral error that increases over time [6], the accumulated error is still inescapable, 
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leading to the degradation of positioning accuracy. It will also reduce the level of the autonomy 

in various industrial tasks. Therefore, a high-robustness positioning system is needed. 

The other type is external sensors, which are separated from the robot body, such as image 

sensors and light detection and ranging (LiDAR). These sensors are capable to of measuring 

an absolute position with the aid of a fixed global reference in the environment. In [7], a radio-

frequency identification (RFID) reader is mounted on the robot to track its position in the scene 

where RFID tags are placed at each intersection of structured environment ways. A Bayesian 

filter-based robot positioning system with RFID tag collecting is proposed in [8], and the 

average positioning accuracy is about 50 cm. In [9], the robot is equipped with an array of 

microphone, and the positioning is achieved using time difference of arrival (TDOA). An 

unscented Kalman filter-based position estimation method is proposed in [10], where a 

tachometer is mounted on the robot. To increase the positioning accuracy, more sensors, such 

as IMUs, are needed. In [11], a biomimetic radar sensor-based positioning system is proposed, 

and it can locate a robot with an average accuracy of 35 cm. Another robotic positioning scheme 

was based on simultaneous localization and mapping (SLAM) and laser sensors, and was 

presented in [12] using Monte Carlo localization and convolutional neural network (CNN) 

algorithm. However, the average accuracy is limited 40 cm which is insufficient for robotic 

applications. 

VLC is a powerful technology for future generations of mobile network well beyond 5G. 

Based on LED and VLC technologies, visible light positioning (VLP) can use the LED 

lightings to transmit position information. Compared with the above works, VLP can achieve 

much better, centimeter-level, positioning accuracy.  

According to receiving sensors, VLP technology can be divided into PD-based positioning 

and image sensor-based positioning. In [13], the authors proposed and demonstrated a PD-

based VLP system with machine learning technique applied to enhance positioning accuracy. 

In image sensor-based VLP systems, image-processing approach is applied at the receivers to 

convert the received 2D image into a three-dimensional image. Compared with PD-based VLP 

technology, image sensor-based VLP technology is less affected by ambient light, and can 
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realize higher positioning accuracy. Moreover, image sensors can be combined with smart 

mobile devices such as smartphones to truly implement VLP technology from research lab to 

commercial applications.  

The consideration of positioning algorithm includes positioning accuracy, real-time and 

robustness [14]. However, most existing studies on image sensor-based VLP can only achieve 

static positioning and aim at enhancing the positioning accuracy. The method can suppress the 

positioning errors caused by rotation and enhance the robustness of image sensor-based VLP 

systems. Nowadays, there is an increasing demand for robots to conduct more challenging and 

smart tasks, and at the same time the operation environments of robots has become more 

complicated. Indoor complex scenarios, such as domestic or industrial workspaces, contain 

various blind corners that are hard to detect. These kinds of application and environmental 

status will actually influence the positioning accuracy of indoor robotic platforms. Furthermore, 

such systems are very demanding and challenging since all the above situations and types of 

movement are characterized by high complexity and diversity. Two requisites of indoor robot 

positioning systems are real time ability and high accuracy, which will improve the efficiency 

of robot work. In [21], a loosely-coupled VLP-inertial fusion method was proposed, to improve 

positioning robustness under LED shortage/outage with an inertial measurement unit (IMU) 

and rolling shutter camera. However, it is challenging for a robot to locate itself in a complex 

and moving scenario only with a single sensor. Therefore, the localization and navigation of 

the robot is a challenging problem, and VLP should be the most suitable solution for indoor 

mobile robot positioning. 

4.2.2 Path Planning Algorithms 

In a navigation process, path planning and kinematics control is applied to the robot to reach 

a required position. Path planning includes a global planner and a local planner. The objective 

of global path planning is to build a feasible path from the starting point of the robot to the goal 

set by the controller. Global path planning is based on the static map layer and is updated with 

a relatively low frequency, assuming complete knowledge of the obstacles is obtained. By 

contrast, local path planning mainly follows the global path and at the same time makes the 
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robot avoid the dynamic obstacles detected by the sensors. Therefore, local path planning is 

based on the obstacle map layer determined by the data from the sensors on the robot and is 

updated with a relatively high frequency, assuming there is still unknown obstacles in the area 

to be perceived.  

Table 4.1: Comparison between global path planning and local path planning. 

Global Path Planning Local Path Planning 

Static map-based Sensor-based 

Comparatively low update frequency Comparatively high update frequency 

Assume perfect knowledge of the area to be 

perceived (static map) 

Assume imperfect knowledge of the area to 

be perceived 

Determine a beneficial path to the set goal  Follow the global path while avoiding 

obstacles 

Dijkstra’s algorithm is first proposed by a computer scientist called Edsger W. Dijkstra, and 

becomes one of the most universal global path planning algorithms [15]. It is capable of 

determining the shortest path from one vertex to other vertices. The main idea of Dijestra’s 

algorithm is that it starts from the starting point and adopts the strategy of greedy algorithm. It 

regards the starting point as the center point and expands outwards layer by layer until it reaches 

the destination [16]. As Dijestra’s algorithm uses greedy algorithm, the number of nodes on the 

graph determines its speed of computation. The advantage of Dijestra’s algorithm is that it can 

solve the optimum shortest path, but it takes longer computation time to search for the shortest 

path. A* algorithm is another widely used global path planning algorithm, and is first proposed 

by Peter Hart, Nils Nilsson and Bertram Raphael from Stanford Research Institute [17]. It is a 

heuristic search algorithm. In other words, it is an algorithm to find the optimal solution using 

heuristic function in a finite solution space that can be exhausted. A* algorithm can find the 

optimal solution, but highly relies on the heuristic function and has high computational 

complexity.  

For local path planning, elastic band (EBand) planner has two essential components: 

contraction force and repulsion force [18]. Contraction force is used to generate the shortest 
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path between the start point and goal point, and repulsion force is aimed to avoid the path from 

the obstacles. EBand local planner can determine the shortest path. However, it does not 

consider the robot’s kinematics and thereby is sensitive to the acceleration related parameters. 

Timed elastic band (TEB) local planner is an extension of EBand planner by decreasing the 

trajectory execution time [19]. It can bypass obstacles even when the obstacles are right in front 

of the robot. Therefore, it has good performance in dynamic-obstacle avoidance. However, it 

requires high computational complexity. Dynamic Window Approach (DWA) local planner 

takes robot’s kinematics into consideration and requires relatively low computing power. The 

first step of DWA local planner is to discretely samples robot velocity including linear and 

angular velocities. Then forward simulation is performed to evaluate each trajectory in terms 

of calculating a cost function. The cost function is computed by the sum of the distance between 

the planned path and the endpoint of the trajectory, the distance between the local goal and the 

endpoint of the trajectory and the maximum obstacle cost along the trajectory. By comparing 

the cost function of each trajectory, the best trajectory is determined and the corresponding 

velocities are sent to the robot base. The disadvantage of DWA local planner is that it has poor 

performance in highly complex and dynamic-obstacle environment. 

4.3 VLP-based Mobile Robot Platform 

In this chapter, we propose an image sensor-based indoor VLP demonstration based on the 

studies on the identification of the LED-ID position information, positioning accuracy, real-

time and robustness. Figure 4.1 describes the hardware and processing flow of the proposed 

robotic localization platform. The main contributions are as follows: 

1. Design a smart LED system aimed for VLC positioning. VLC modulated LEDs are used 

as location beacons to provide location signals that are captured by the camera mounted on the 

robot to calculate the three-dimensional position of the robot with cm-level accuracy. Each 

smart LED generates a unique ID with a wireless control module. Bluetooth Low Energy (BLE) 

SoC is equipped to support iBeacon and VLC data/frequency and implement a wireless control 

system for these LEDs. The VLC signal adopts OOK modulation scheme by using designed 

data pattern to control the on and off states of a power switch. 



54 

 

2. Design a VLC high-precision three-dimensional imaging positioning algorithm based on 

a single LED. As VLP systems need to consider the accuracy and real-time problem at the same 

time, this demonstration proposes a high-precision VLC three-dimensional imaging 

localization algorithm based on a single LED. 

3. Based on the above algorithms, we build a VLP-based mobile robot experiment platform. 

Smart LEDs are used for VLC function. The camera mounted on the robot will capture the 

images of LEDs, use ID recognition algorithm to identify the IDs and then get the position with 

image-based algorithm. 

 

Figure 4.1: Diagram illustrating VLC sources used for robotic 3D localization. 

4.3.1 Smart LED System for VLP 

In the implementation of this demonstration, the whole system consists of two parts: 

intelligent lighting and image sensor-based VLC light tracking. Figure 4.2 shows our VLP 

platform for a single robot navigation system deployed at our lab (Integrated Circuit Design 

Center, 3/F, CYT Building, HKUST). As for the intelligent lighting, we use one smart LED as 

the signal source of VLC. To easy install and deploy the transmitter, we use a universal VLC 
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modulator to convert existing LED lighting into VLC modulated smart lighting for indoor 

positioning [22]. The unique identifiers (UIDs) provided by the LEDs are set as the critical 

points and the UIDs are stored in the memory (flash) integrated in BLE SoC [23]. BLE SoC is 

the core chip of wireless control module. With the embedded BLE, the lights also support geo-

fencing. To avoid from interruption, we use common serial peripheral interface (SPI) with 

direct memory access (DMA) to control the generation of VLC data in BLE SoC. The 

frequency of SPI changes along with the sequence of data while DMA works in a repeated 

mode. Then all of the stored data are loaded one-off from flash to RAM and used to generate 

the control signal to modulate the light of those LEDs by adopting OOK modulation scheme. 

Then the data of UIDs can be transmitted without intervention. After the data sequence comes 

out from the previously determined I/O pin, it will be pushed out to the gate of NMOS power 

switch then control the on and off states. The LEDs are connected in series of the NMOS power 

switch and they will repeatedly turn on and turn off following the VLC data pattern. The UIDs 

broadcast by LEDs can be detected with the camera working at rolling shutter mode as captured 

images. At the receiver side, image processing and VLC decoding algorithm is applied to 

recover the embedded digital code from the captured patterns [24].  

 

Figure 4.2: Demonstration setup of high-precision positioning system based on VLC smart 

lighting. 
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In this demonstration, we utilized LED panels with the diameter of 17.5cm and they are 

mounted on poles with the height of 2.85 m. The BLE SoC we used for wireless control module 

is DA14580_QFN40. For the receiver end, we use a camera mounted on the top of the robot to 

capture the images of the LEDs and use remote control laptop to process those images and 

dealing with tracking algorithm which is the second part of this system. 

4.3.2 Real-time Robotic Localization System 

In order to realize the image sensor-based VLC light tracking function, the first task is to 

obtain the LED-ROI region by using the VLC dynamic positioning tracking detection 

algorithm. Secondly, we need to identify the ID position information with the LED-ID 

recognition algorithm. Image processing technique is performed to extract the images, based 

on which the LED-ID position information is identified. By pre-establishing the LED-ID 

database, the machine-learning algorithm is used to perform feature matching on the LED-ID 

light stripe code to realize LED-ID identification. Lastly, the LED image-based localization 

algorithm is applied for VLP. After accurately identifying the LED-ID, the position coordinate 

of the LED is obtained, the position of the terminal relative to the LED in the locating position 

area can be obtained by the imaging-positioning algorithm, thereby achieving indoor 

positioning [25]. For the image processing (LED-ID feature extraction) procedure, the VLC 

tracking detection algorithm is applied and relative coordinate of the camera to the LED is 

calculated. The Turtlebot3 robot kit is based on a Raspberry Pi 3B (Quad ARM Cortex-A53 

Core 1.2 GHz Broadcom BCM2837 64 bits CPU and 1 GB RAM). The operating system of 

the Turtlebot3 robot is Ubuntu 16.04 MATE, and the operating system of the laptop is Ubuntu 

18.04 LTS. The ROS release is ROS Melodic.  
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(a) 

   

(b) 
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(c) 

Figure 4.3: Experiment results of the proposed robot positioning system: (a) experiment 

setup, (b) VLP results when the camera moves on a plane, (c) VLP results when the camera 

rotates and is partially blocked in 3D space. 

Figure 4.3 shows the experiment results of the proposed real-time robotic positioning system. 

The gray area in the middle of Figure 4.3(a) is the digital map of the perceiving area (Integrated 

Circuit Design Center, 3/F, CYT Building, HKUST). The gray block logo on the map is the 

real-time position of the robot. The real-time view of the camera mounted on the robot facing 

to the ceiling is shown at left bottom of Figure 4.3(a). The purple dots on the digital map are 

the positioning results of moving trace of the robot, which is controlled by the remote laptop. 

The terminal on the right top of Figure 4.3(a) shows the linear and angular velocities of the 

robot which are controlled by the keyboard. The terminal on the right bottom of Figure 4.3(a) 

gives the real-time 3D position of the robot estimated by the proposed single LED-based VLP 

system. Figure 4.3(b) shows the positioning results when the camera moves on a plane. The 

altitude difference between the plane and the LED is about 0.8 m and the average positioning 
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error is about 2 cm. Figure 4.3(c) illustrates the 3D VLP results when the camera has 3D 

rotation and is partially blocked in 3D space. 

4.4 Application of Robot Positioning and Navigation System: Panorama Creation 

Compared with ordinary pictures, panoramas are more vivid and interactive. Using 

panoramas to replace ordinary pictures is a rising publicity method in recent years. Panoramas 

give an all-round display instead of a single perspective and have been widely used in many 

places such as real estates, tourisms, hotels, and KTVs. Panorama can be created by human 

holding a 360-degree camera as shown in Figure 4.4. However, human taking pictures with 

hand-held cameras may cause camera shake. Furthermore, a 360-degree image has severe 

image distortion as shown in Figure 4.4(b). Therefore, we propose to use a robot mounted with 

an ordinary USB camera to take images and generate a panorama by rotating at a target point. 

By using the proposed robotic positioning and navigation system, the robot can be sent to a 

given location with high accuracy and obtain complete information of the environment. 

Furthermore, compared with a 360-degree camera, a USB camera is much cheaper.  

 

Figure 4.4: 360-degree image capture: (a) a 360-degree camera, (b) a typical 360-degree 

image 

4.4.1 Real-time Robotic Navigation System 

In ROS platform, navigation is achieved by a 2D navigation stack reading in the information 

from odometer, sensors and a goal pose sent by the controller. The map layer in ROS is 
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composed of a static map layer, an obstacle map layer and an inflation layer. The static map 

layer is usually based on a premade digital map, such as a sensor map or a floor plan. The 

obstacle map layer is constructed using the dynamic obstacle information detected by the 

2D/3D LiDAR on the robot. The inflation map is the expansion of the dynamic obstacles on 

the obstacle map and the static obstacles on the static map.  

Furthermore, using the obstacle information, a cost map is built during navigation process. 

Based on the cost map, a global and local path plan is developed. ‘move_base’ is the main 

package in the navigation stack and consists of five main nodes given by ‘global_planner’, 

‘global_costmap’, ‘local_planner’, ‘local_costmap’ and ‘recovery_behaviour’. In our 

experimental setup for robot navigation, we use Dijkstra’s algorithm based global planner and 

DWA local planner.  

4.4.2 Image Taking at a Target Point 

In the proposed VLP-based image taking robot platform, a USB camera is mounted on the 

top of the robot as shown in Figure 4.5. The USB camera is Phottix PC-20 FHD Webcam and 

the resolution of the captured images are set as 640× 480. Other setup is the same as that 

described in Section 4.3. Figure 4.6 gives the diagram of the proposed VLP-based image taking 

robot system. To navigate a robot mounted with a USB camera to a target point to take images 

and generate panoramas, the first step is to send the exact location of the target point to the 

robot in terms of 3D coordinates of the point or a robot pose on RViz. When receiving the 

navigation task, the robot will move to the goal under the guidance of Dijkstra’s global planner 

and DWA local planner. After reaching the goal, the robot will start rotating automatically, 

capture images with the USB camera and rename the images with the location information 

obtained from the VLP system. When rotating for 360 degree, the robot will stop automatically 

and wait for the next goal. 
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Figure 4.5: The robot equipped with a typical USB camera in the proposed VLP-based 

image taking robot system. 

 
Figure 4.6: Diagram of the proposed VLP-based image taking robot system. 

Figure 4.7 visualizes the node relationship in the proposed VLP-based image taking robot 

system using rqt_graph package in ROS system. The /mkdir_position node subscribes to three 

topics: the image view of the USB camera /usb_cam/image_raw, the status if the robot has 

reached the goal /move_base/action_topics and the location of the robot estimated by the 

proposed VLP system /slovlp_ekf_info. Moreover, when the robot reaches the goal sent the by 

the controller, the /mkdir_position node will publish a topic named /stop_rotation. Then a node 

named /rotation will subscribe the /stop_rotation topic and publish a new velocity control topic 

given by zero linear velocity and a fixed angular velocity, which is subscribed by the robot 
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base, to make the robot rotate. A new folder will be created on the remote control laptop named 

by the x- and y-coordinates of the robot. Images captured by the USB camera will be saved in 

the newly generated folder and named by the azimuth angle of the robot when the robot is 

rotating. After the robot has rotated for 360 degree, another velocity control topic given by zero 

linear velocity and zero angular velocity will be published to stop the robot and wait for the 

next command. 

 

Figure 4.7: Graph representation of the nodes in the proposed ROS-based image taking 

robot system. 

Figure 4.8 shows the robot navigation and image saving process. Two camera views are 

given on the left bottom of Figure 4.8(a). The higher one is the view of the USB camera and 

the lower on is the view of the industrial camera facing to the ceiling for VLP function. When 

the human controller sends a navigation goal to the robot via RViz software, a red arrow will 

be shown on the digital map as shown in the middle of Figure 4.8(a). Two terminals are shown 

on the right bottom of Figure 4.8(a). The image taking and saving node runs in the higher one 

and the robot velocity control node runs in the lower one to control the robot to rotate or stop. 

When the robot arrives at the target point, it will start rotating and image saving as shown in 

Figure 4.8(b). A new folder will be created and named by the x- and y-coordinate of the robot 

estimated by the proposed VLP system. For example, if the robot arrives at the target point of 

(157, 39) in centimeters, the new folder will be named with 01570039. Then in the newly built 

folder, images captured by the USB camera will be saved and named with the azimuth angle. 

For example, if the azimuth angle of the robot is 45 degree, the image will be saved as 0045.jpg 
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under the folder 01570039. When the robot has rotated for 360 degree, it will stop and wait for 

another command as shown in Figure 4.8(c). The terminal on the right bottom gives the stop 

instruction. Except for setting the navigation goal via RViz, we can send the coordinates of the 

target point using command lines. Figure 4.8(d) illustrates that a new goal whose coordinates 

are (0.06, 0.30, 0) in meters is sent to the robot via terminal. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.8: Navigation and image saving process: (a) sending a navigation goal to the 

robot via RViz, (b) the robot moving to the target point, (c) the robot saving images after 

arriving, (d) sending another navigation goal to the robot via a command line. 
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4.4.3 Panorama Creation 

 

(a) 

 

(b) 

Figure 4.9: The saved images using the proposed system: (a) the created folders named 

with the x- and y-coordinates estimated by VLP, (b) the saved images named with the 

azimuth angle. 
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After the images are saved with the resolution of 640×480 in different folders for different 

locations as shown in Figure 4.9, we use opencv package to stitch the image. The stitching 

process follows the Brown and Lowe method [27], which is insensitive to the order of the 

images, the orientation of the images, any illumination changes or noisy images. The generated 

panorama shows in Figure 4.10. 

 

Figure 4.10: The generated panorama using the saved images with location information. 

4.5 Summary 

This real-time robotic localization platform deals with high precision indoor positioning and 

VLC systems, both topics being hot trending in both academia and industry. It implements a 

completed positioning system with LEDs as transmitter and the camera on the robot as receiver 

and the position information is shown on the remote terminate in real time. The proposed 

system design will stimulate a wide range of the innovative utilization of VLP technology and 

provide a new idea for microwave or photonics-based positioning systems. Based on the 

proposed robot positioning and navigation system, a panorama creation method is proposed 

which can generate a panorama at any target point using a robot mounted with a typical USB 

camera. 
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CHAPTER 5 VLP and SLAM-assisted Map Calibration for Robot 

Navigation 

5.1 Introduction 

With the development of sensors, control systems, bionics and artificial intelligence, robot 

technology has been investigated and applied in many areas to provide services such as hospital 

inspection, hotel delivery and warehouse logistics. Using mobile robots in indoor environments 

can effectively improve the intelligence and effectiveness of task execution. Meanwhile, in 

robot applications, navigation plays an increasingly crucial role. As an essential element in the 

navigation process, high-precision positioning in indoor environments is still a challenging task. 

Since the Global Positioning System (GPS) can not provide satisfactory positioning services 

in indoor environments due to the extreme attenuation and interruption caused by indoor 

structures, Wi-Fi/Bluetooth fingerprinting-based indoor positioning systems (IPSs) have raised 

extensive attention and achieved encouraging results. However, positioning based on Wi-

Fi/Bluetooth can only achieve meter-level accuracy [1]. 

Compared with Wi-Fi/Bluetooth fingerprinting-based positioning, positioning with 

landmarks composed of visible light positioning (VLP)-enabled LED lights can provide an 

absolute location when using an image sensor as a receiver. Scanning of the whole area is not 

required, and global 3D positioning results can be achieved as long as the 3D position 

information of the landmarks is encoded in the VLP lights. In our previous works [2] and [3], 

we proposed a VLP system based on a single LED that could achieve centimeter-level accuracy, 

with an average accuracy of 2.1 cm for a stationary robot [2] and of 3.9 cm for a 3D tilted 

receiver camera [3]. 

Besides positioning, building an accurate map is another important element for navigation 

because both positioning and path planning rely on the map information of the environment 

[4]. One typical map representation is an occupancy grid map [5], in which the value of each 

cell represents the probability of being occupied by obstacles. Currently, Simultaneous 

Localization and Mapping (SLAM) technology [6] is widely used to determine the position of 
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the robot and build an occupancy grid map at the same time by fusing available sensor 

information. However, SLAM has three main drawbacks. The first is that SLAM can only 

determine a local position and the relative movement of the robot in the environment. Second, 

SLAM requires scanning and survey of the whole scene to get a map. Last, the position based 

on the sensors in the robot, including the odometer and inertial measurement unit (IMU) will 

drift and lose global accuracy with time. These drawbacks lead to challenges for mapping and 

navigation in large-scale and multi-floor environments. 

In addition, the occupancy grid map created by SLAM only contains three types of 

information: the cell is occupied, free of obstacles or unknown to the robot. There is no 

semantic information of the structures. Moreover, the occupancy grid map may not be oriented 

so that humans can distinguish the direction with a correspondence to the real world. The noise 

from the sensors will also be shown on the map and mislead the robot as well as humans. 

Therefore, it is noticeably difficult for humans to understand an occupancy grid map generated 

by a robot and send commands to the robot based on it. 

Noting the drawbacks of the occupancy grid map generated by SLAM and its difficulties 

for humans, we propose to use a layout map to promote better cooperation between humans 

and robots. A human in an indoor environment will always use a layout map, which illustrates 

structures and contains semantic information, to navigate a pathway from the current position 

to the target position. A layout map always demonstrates the whole area and is complete and 

without noise. The boundaries on such maps refer to obstacles in the area that can not be crossed 

by a robot and have the same meaning as the occupied cells in an occupancy grid map. However, 

the accuracy of a layout map in terms of resolution can not be guaranteed, which will degrade 

the accuracy and reliability of navigation. 

Therefore, in this chapter, we propose to calibrate the layout map of a scene using the 

occupancy grid map generated by SLAM to improve navigation performance. In the mapping 

process, an image sensor is mounted on the robot and we use VLP landmarks to acquire the 

robot’s position on the layout map. At the same time, SLAM is performed on the robot, and its 

position on the occupancy grid map is determined by the sensors. After at least two landmarks 
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are tracked by the image sensor on the robot, the occupancy grid map generated by SLAM is 

saved as a sensor map. Then, the orientations of the two maps are aligned based on the pixel 

coordinates of the tracked landmarks on the maps. Moreover, the scale of the layout map is 

calibrated by computing the pixel distance between the key points. To keep the consistency of 

the map image after scaling, the eight-neighborhood averaging method and bilinear 

interpolation method are applied. It is noteworthy that the map calibration method based on 

landmarks is scalable to scenes mounted with multiple landmarks by computing the average of 

the rotation angle and scale of every two key points. We finally present experiments to verify 

the effectiveness of the proposed map alignment methods and analyze the performance on the 

robot operating system (ROS). 

The chapter is organized as follows. Related work is introduced in Section 5.2. Section 5.3 

explains the mapping system and map transformation process. In Section 5.4, we present the 

details of the proposed VLP landmarks and SLAM-assisted automatic map calibration method. 

Experimental results are provided and analyzed in Section 5.5. Finally, Section 5.6 concludes 

this chapter. 

5.2 Related Work 

To create a complete map of an environment, especially a large venue, a map merging 

method is widely used to integrate the occupancy grid maps generated at different locations of 

the environment to be perceived. A map merging method based on pose graphs is presented in 

[7], which requires consecutive pose information of the robot to remove the distortion of the 

generated maps. However, due to the accumulated error from robot sensors, it is difficult to 

continuously obtain high-accuracy positioning results without landmark-based error correction, 

especially in a large venue. In [8], a pair-wise map merging method is proposed to integrate the 

local maps built by different robots into a single global map. However, it requires high 

overlapping percentage between two maps, otherwise it will lead to unreliable map integration 

performance. Multi-robot cooperative mapping by introducing augmented variables to 

parallelize the computation is proposed in [9], while in [10], a robust map merging algorithm 

with multi-robot SLAM (MRSLAM) is proposed, but it also requires a large amount of overlap 
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between the two maps generated by two robots to extract and match the features in the two 

maps. In [11], the existing methods on merging redundant line segments are evaluated by 

experiments. A distributed method for constructing an occupancy grid map using a swarm of 

robots with global localization capabilities and limited inter-robot communication is proposed 

in [12] and physical experiments are performed. Instead of a diffusive random walk of the 

robots, Lévy walks and larger individual memory are applied to the robots. The drawback of 

all these map merging methods, however, based on a single robot or multiple robots, is that 

they rely on scanning the whole environment to get complete map information, which is time-

consuming and certainly leads to a high cost. 

During recent years, a significant amount of work has been done on map alignment of 

different types of maps. In [13], a map alignment method for a floor map and an occupancy 

grid map generated by SLAM using a similarity transformation is proposed. The process is not 

time-consuming, but it has poor performance on maps with noise, different scales or types of 

maps. An improved SLAM using the Bayesian prior extracted from a blueprint is presented in 

[14]. It improves the performance of SLAM algorithm, but in order to determine the 

correspondence of two kinds of maps, the semantic information on the layout map has to be 

eliminated. Therefore, it is still difficult for humans to understand the generated map, and the 

method cannot actually facilitate the collaboration between humans and robots. Scanning of 

the whole scene using SLAM is also required. A nonlinear optimization method for nonrigid 

alignment of maps is proposed in [15], but it has a high computation cost due to the nonlinear 

optimization. A fast map matching algorithm based on area segmentation is presented in [16]. 

However, it also requires scanning the whole area and is sensitive to the occupancy grid maps 

with distortion induced by the accumulated error from robot sensors. 

Therefore, calibrating and aligning maps of different types and maps with distortions or 

noise is still a challenging task. In this chapter, we propose to calibrate a layout map with a 

sensor map generated by SLAM. The proposed method works for maps in different orientations 

or scales. We use high-accuracy VLP landmarks to obtain the position of the robot on the layout 

map and align it with its position on the sensor map. At least two landmarks are placed in the 
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environment to be perceived, and therefore scanning the whole venue is not required. With a 

calibrated layout map, a human can send instructions to the robot with the semantic information 

shown on the map and the robot can navigate to the target point with the aid of the occupancy 

information on the map, by which the efficiency thus is improved. 

5.3 Mapping System 

In this section, the system design of the proposed map calibration technology, including the 

occupancy grid mapping system, map transformation method and the proposed diagram, will 

be presented. 

5.3.1 Occupancy Grid Mapping System 

An occupancy grid map, which consists of an array of cells representing the occupancy 

information of an environment, was first introduced in [17] and is usually generated from 

SLAM. The binary variable in each cell represents the probability of the presence of an obstacle 

at that location of the perceived environment. If the variable is closer to 0, there is a higher 

certainty that the cell is not occupied and is free of obstacles. If the variable is 0.5, the cell is 

unknown to the robot, neither occupied nor free. The probability in each cell is relatively 

independent. An occupancy map is updated by the detection results from robot sensors. In this 

chapter, we use a 2D occupancy map to describe a slice of the 3D perceived environment. 

When we save the occupancy grid map as an image file, the probability in each cell 𝑝 will 

convert to a grayscale value in each pixel 𝑔: 

 𝑔 = −254𝑝 + 254. (5-1) 

Therefore, if the probability of an obstacle in the cell is close to 0, the grayscale value in 

that pixel will be close to 254, indicated in white. Otherwise, the color of the pixel will reach 

black. 

5.3.2 Map Transformation 

To achieve map calibration, map transformation, including rotation, translation and scaling, 

will be performed on the original map image. For a grayscale map image 𝑮 of the size ℎ × 𝑤, 

each pixel contains the grayscale value of that pixel. As the grayscale values represent three 
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different occupancy meanings to the robot, we divide the values in matrix 𝑮 to three units, 

occupied, unknown and free of obstacles, with two thresholds given by 𝑡𝑜 and 𝑡𝑓, as shown 

in Figure 5.1. Thus, if the grayscale value is lower than 𝑡𝑜 , the pixel is occupied. If the 

grayscale value of the pixel is higher than 𝑡𝑓, the pixel is free of obstacles. Otherwise, the pixel 

is unknown for the robot. 

 

Figure 5.1: Occupancy-coordinate transformation for a grayscale map image. 

To present the map transformation method in an intuitive way, we represent the map image 

as three matrices, 𝑴𝒐, 𝑴𝒖 and 𝑴𝒇, containing the pixel coordinates of the grayscale values 

in the three units mentioned above. The three matrices are of the size 3 × 𝑁𝑜, 3 × 𝑁𝑢 and 

3 × 𝑁𝑓, respectively, where 𝑁𝑜 is the number of pixels that are occupied, 𝑁𝑢 is the number 

of pixels that are unknown to the robot, and 𝑁𝑓  is the number of pixels that are free of 

obstacles, and 𝑁𝑜 + 𝑁𝑢 + 𝑁𝑓 = ℎ𝑤 . The first rows in the three matrices represent the u-

coordinate of the pixels, and the second rows represent the v-coordinate of the pixels in the 

pixel coordinate system. All the values in the last rows are assigned ‘1’. The order in which we 

place the pixel coordinates of the grayscale values in matrix 𝑮 in the occupancy-coordinate 

matrices is based on checking the grayscale values in 𝑮 row by row and then placing their 

pixel coordinates into the corresponding matrix. 
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Map transformation can be directly performed by matrix multiplication on the occupancy-

coordinate matrices 𝑴𝒐 , 𝑴𝒖  and 𝑴𝒇 . For example, if the map is supposed to rotate 

clockwise with angle 𝜑  at the center (𝑤𝑐, ℎ𝑐) , enlarge by 𝑘  times, and then translate 

(𝑤𝑡, ℎ𝑡) , we should firstly translate the origin of the coordinate system to the map center 

(𝑤𝑐, ℎ𝑐), and the first translation matrix 𝑻𝒄 is given by 

 𝑻𝒄 = [
1 0 −𝑤𝑐

0 1 −ℎ𝑐

0 0 1

]. (5-2) 

Subsequently, we should rotate the map clockwise with angle 𝜑, and the rotation matrix 𝑹 

is given by 

 𝑹 = [
cos𝜑 −sin𝜑 0
sin𝜑 cos𝜑 0

0 0 1
]. (5-3) 

The next step is to enlarge the image, where the scaling matrix 𝑺 can be described as 

 𝑺 = [
𝒌 𝟎 𝟎
𝟎 𝒌 𝟎
𝟎 𝟎 𝟏

]. (5-4) 

Finally, we will translate the origin of the coordinate system back and further translate 

(𝑤𝑡, ℎ𝑡), and the translation matrix 𝑻 is given by 

 𝑻 = [
𝟏 𝟎 𝒌 ∗ 𝒘𝒄 + 𝒘𝒕

𝟎 𝟏 𝒌 ∗ 𝒉𝒄 + 𝒉𝒕

𝟎 𝟎 𝟏

]. (5-5) 

Therefore, the transformed occupancy-coordinate matrices 𝑴𝒐𝒕
 , 𝑴𝒖𝒕

  and 𝑴𝒇𝒕
  can be 

obtained by 

𝑴𝒐𝒕
= 𝑻𝑺𝑹𝑻𝒄𝑴𝒐,

𝑴𝒖𝒕
= 𝑻𝑺𝑹𝑻𝒄𝑴𝒖,

𝑴𝒇𝒕
= 𝑻𝑺𝑹𝑻𝒄𝑴𝒇.

 (5-6) 

It is noteworthy that, after we scale up an image, each pixel of the original map image is 

moved in a certain direction based on the scaling constant 𝑘. However, if the scaling factor is 

larger than 1, there may exist unassigned pixel values in the resultant map image, which are 

regarded as holes. Furthermore, if the scaling factor is smaller than 1, there will be multiple 

assigned pixels. Therefore, we will add an interpolation and eight-neighbourhood averaging 
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method after scaling transformation to appropriately assign the grayscale values to these pixels. 

The details will be described in Section 5.4.3. 

5.3.3 Overview of the Proposed Map Calibration System 

 

Figure 5.2: The proposed VLP landmarks and SLAM-assisted automatic map calibration 

for robotic navigation: (1) system setup, (2) mapping process, (3) calibration process. 

The diagram of the proposed map calibration system using VLP landmarks and SLAM is 

given in Figure 5.2. The system setup contains a layout map of the environment to be perceived, 

a robot, and multiple VLP lights with different IDs installed in the experimental area. The VLP 

landmarks are mounted on the ceiling and controlled by visible light communication (VLC)-

enabled light emitting diode (LED) drivers to transmit optical signals [18]. The LEDs are 

modulated by the on-off keying scheme and encoded with unique IDs, which contain the LEDs’ 

world coordinates stored in a uniform resource identifier (URI) database. The robot used in the 

mapping system is equipped with multiple sensors, including an IMU, odometer and LiDAR. 

A camera is also mounted on the robot to face toward the ceiling and works in rolling shutter 

mode to capture the signals broadcasted by the VLP-based LEDs, decode and extract the 

position information. 
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To start the mapping process, the robot is set under a VLP landmark and uses the camera to 

capture the LED image and decode the position of the starting point. Then we apply SLAM to 

the robot and control it to move to different landmarks and record its positions, as acquired 

from SLAM and VLP landmarks, respectively. The time stamp is simultaneously marked with 

the position. After the robot has tracked at least two landmarks in the area, the mapping process 

can be stopped and the occupancy grid map generated by SLAM is saved. Therefore, we obtain 

one sensor map with the robot’s positions from SLAM and one layout map with the robot’s 

positions from VLP landmarks. Subsequently, we propose to use the obtained sensor map and 

the robot’s positions on two maps to calibrate the layout map. Firstly, we transform the recorded 

world coordinates of the robot to pixel coordinates on the two different maps. Then we calibrate 

the layout map by aligning the robot’s positions on it and the occupancy map. 

5.4 Map Calibration Method 

In this section, we will describe the details of the proposed VLP landmarks and SLAM-

assisted map calibration method. As we mentioned, a layout map contains semantic information, 

which is readable for humans to give instruction to robots. However, the scale of a layout map 

may not be accurate, leading to an inaccurate resolution of the map in terms of meters per pixel. 

In a large scene which is to be perceived, it is difficult and complex to get the resolution through 

measurement. Compared with a layout map, the sensor map generated from SLAM has a much 

more accurate resolution, but more noise points. Therefore, we propose to calibrate the scale 

of the layout map, which will help robots to achieve better navigation performance. 

5.4.1 Positioning on Two Different Maps 

Figure 5.3 illustrates the proposed mapping process. At least two VLP landmarks are 

required to be mounted on the ceiling of the environment which is to be perceived. The exact 

position of the mounting location in the environment is encoded in the VLP light and is 

broadcasted to the robot by OOK modulation. The positions of the VLP lights are also marked 

on the layout map. We use a robot equipped with a camera, odometer, IMU and LiDAR. The 

camera is set to face the ceiling and is used to get the robot’s position by VLP. When the camera 
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detects a VLP landmark, it will decode the position information encoded in the rolling shutter 

patterns, and then translate it to its own position. The translation from the world coordinates of 

the landmark to the world coordinates of the robot is calculated by the location of the landmark 

on the camera plane and the orientation of the robot determined by the odometer on the robot. 

Then the world coordinates of the robot are further translated to the pixel coordinates on the 

layout map as the landmarks are labeled on the layout map. 

 

Figure 5.3: Mapping process with VLP landmarks and SLAM technology. 

In the mapping process, the robot starts under one of the landmarks to get the first key point 

for map calibration. Then it is controlled to perceive the environment and conduct SLAM with 

its odometer, IMU and LiDAR sensors. The world coordinates obtained from the robot sensors 

are recorded at the same time. After the robot has tracked at least two VLP landmarks, which 

means that we get at least two pairs of coordinates of the key points from the two different 

positioning methods, we can save the occupancy grid map created by SLAM as a sensor map, 

set the resolution of the map in terms of meters per pixel, and then translate the recorded world 

coordinates of the robot to pixel coordinates on the sensor map with the resolution. 
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5.4.2 Calibration of the Orientation 

A layout map is readable for humans and is always presented in an orientation in which 

humans can understand the semantic information. However, the sensor map created by the 

robot may not always be in the same orientation as the layout map used by a human. Therefore, 

we propose to correct the orientation of the sensor map. 

 

Figure 5.4: Key points on the two maps: (a) layout map, (b) sensor map. 

Firstly, we convert the layout map to a grayscale image 𝑮𝒍. Since in a typical layout map, 

furniture and structures are drawn with black or dark squares. Thus, the grayscale values in the 

converted layout map have the same meaning as the grayscale values in the sensor map, where 

if the pixel is in black and its grayscale value is close to 0, the probability of an obstacle at that 

point is close to 1. Then for the saved sensor map 𝑮𝒔, we firstly find the occupancy-coordinate 

representation given by 𝑴𝒔𝒐
, 𝑴𝒔𝒖

 and 𝑴𝒔𝒇
. Then in the mapping process, we assume that 

the robot has detected two landmarks and labeled them on the two maps according to the 

translated pixel coordinates given by (𝑢𝑙1,𝑣𝑙1) and (𝑢𝑙2,𝑣𝑙2) on the layout map and (𝑢𝑠1,𝑣𝑠1) 

and (𝑢𝑠2,𝑣𝑠2) on the sensor map, as shown in Figure 5.4. Then we draw a line between the two 

key points and find the angle between the line and the negative u-axis in the pixel coordinate 

system. 
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Figure 5.5: Orientation calibration for the sensor map: (a) translate the rotation center, (b) 

rotate and crop, (c) fill in the corners. 

To rotate the sensor map clockwise with the angle of 𝛼𝑙 − 𝛼𝑠, where 𝛼𝑙 is the angle on the 

layout map and 𝛼𝑠  is the angle on the sensor map, we firstly translate the origin of the 

coordinate system to the map center (
𝑤𝑠

2
,
ℎ𝑠

2
), which is the rotation center, as shown in Figure 

5.5(a). The origin translation matrix 𝑻𝒔𝟏 is given by 

 𝑻𝒔𝟏 = [

1 0 −
𝑤𝑠

2

0 1 −
ℎ𝑠

2

0 0 1

], (5-7) 

where 𝑤𝑠 and ℎ𝑠 are the width and height of the sensor map image 𝐆𝐬. Subsequently, we 

substitute the rotation angle 𝛼𝑙 − 𝛼𝑠 into the rotation matrix defined in (5-3) as 

 𝑹𝒔 = [
cos(𝛼𝑙 − 𝛼𝑠) −sin(𝛼𝑙 − 𝛼𝑠) 0
sin(𝛼𝑙 − 𝛼𝑠) cos(𝛼𝑙 − 𝛼𝑠) 0

0 0 1

]. (5-8) 

Then we translate the origin of the coordinate system back, and the translation matrix 𝑻𝒔𝟐 

is given by 

 𝑻𝒔𝟐 = [

1 0
𝑤𝑠

2

0 1
ℎ𝑠

2

0 0 1

]. (5-9) 
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By multiplying the translation matrices and rotation matrix, the occupancy-coordinate 

representation matrices of the sensor map are given by 

 

𝑴𝒔𝒐𝒕
= 𝑻𝒔𝟐𝑹𝒔𝑻𝒔𝟏𝑴𝒔𝒐

,

𝑴𝒔𝒖𝒕
= 𝑻𝒔𝟐𝑹𝒔𝑻𝒔𝟏𝑴𝒔𝒖

,

𝑴𝒔𝒇𝒕
= 𝑻𝒔𝟐𝑹𝒔𝑻𝒔𝟏𝑴𝒔𝒇

,
 (5-10) 

where 𝑴𝒔𝒐𝒕
, 𝑴𝒔𝒖𝒕

 and 𝑴𝒔𝒇𝒕
 are the occupancy-coordinate matrices after rotation. Then we 

assign the corresponding grayscale values to the pixels in sensor map image 𝑮𝒔 and get the 

rotated sensor map image 𝑮𝒔𝒕. 

After rotation, the rotated sensor map image 𝑮𝒔𝒕 may not be in the original size of the 

sensor map image given by 𝑤𝑠 × ℎ𝑠. Therefore, we find the maximal u-coordinate of the pixels 

indicating the cells are free of obstacles or occupied by an obstacle, which is given by 

 

𝑝𝑜𝑢𝑚
= max[𝑴𝒔𝒐𝒕

(1, 𝑖)] , 𝑖 ∈ [1, 𝑁𝑜]⋂ℤ,

𝑝𝑓𝑢𝑚
= max [𝑴𝒔𝒇𝒕

(1, 𝑗)] , 𝑗 ∈ [1, 𝑁𝑓]⋂ℤ,
 (5-11) 

where ℤ is the integer set, 𝑁𝑜 is the width of matrix 𝑴𝒔𝒐𝒕
 and 𝑁𝑓 is the width of matrix 

𝑴𝒔𝒇𝒕
. Similarly, we determine the maximal v-coordinate of the pixels indicating the cells are 

free of obstacles or occupied by an obstacle, which is given by 

 

𝑝𝑜𝑣𝑚
= max[𝑴𝒔𝒐𝒕

(1, 𝑖)] , 𝑖 ∈ [1, 𝑁𝑜]⋂ℤ,

𝑝𝑓𝑣𝑚
= max [𝑴𝒔𝒇𝒕

(1, 𝑗)] , 𝑗 ∈ [1, 𝑁𝑓]⋂ℤ,
 (5-12) 

Then we find the maximum in the u-coordinates and v-coordinates, respectively, given by 

 
𝑤𝑠𝑚 = max[𝑤𝑠, 𝑝𝑜𝑢𝑚

, 𝑝𝑓𝑢𝑚
],

ℎ𝑠𝑚 = max[ℎ𝑠 , 𝑝𝑜𝑣𝑚
, 𝑝𝑓𝑣𝑚

],
 (5-13) 

where (𝑤𝑠𝑚, ℎ𝑠𝑚) is the size to which we will crop the rotated sensor map. 

Then we trim the map image by the width of 𝑤𝑠𝑚 and the height of ℎ𝑠𝑚, as shown in 

Figure 5.5(b) and delete those columns in 𝑴𝒔𝒐𝒕
, 𝑴𝒔𝒖𝒕

 and 𝑴𝒔𝒇𝒕
. Furthermore, we fill in the 

corners with the grayvalues indicating that the pixel is unknown, namely, the half probability 

of an obstacle, as shown in Figure 5.5(c), and add the pixel coordinates of the elements in the 

corners to matrix 𝑴𝒔𝒖𝒕
. The obtained occupancy-coordinate matrices of the sensor map after 

cropping and filling are given by 𝑴𝒔𝒐𝒎
, 𝑴𝒔𝒖𝒎

 and 𝑴𝒔𝒇𝒎
. 
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It is noteworthy that the map rotation process we describe above is based on two key points, 

namely, two VLP landmarks, but it is scalable to a perceived environment that is mounted with 

multiple landmarks by computing the average rotation angle of every two key points on the 

map and substituting the average angle into (5-8). 

5.4.3 Calibration of the Scale 

 

Figure 5.6: Vertical and horizontal distances between the two key points: (a) on the layout 

map, (b) on the sensor map. 

After we align the orientation of the two maps, the next step is to align their scales. As the 

resolution of the sensor map obtained from SLAM is more accurate than that of a manually 

drawn map, we propose to calibrate the scale of the layout map with the sensor map. Firstly, 

we determine the occupancy-coordinate representation of the layout map matrix given by 𝑴𝒍𝒐 , 

𝑴𝒍𝒖   and 𝑴𝒍𝒇 , which indicate the pixels are occupied, unknown or free of obstacles, 

respectively. Then we find the pixel distance between the two key points on the layout map, 

given by 𝑑𝑢𝑙
 in the u-axis and 𝑑𝑣𝑙

 in the v-axis, as shown in Figure 5.6(a), where 𝑤𝑙 is the 

width and ℎ𝑙 is the height of the layout map. Similarly, we get the pixel distance between the 

two key points on the sensor map, given by 𝑑𝑢𝑠
 in the u-axis and 𝑑𝑣𝑠

 in the v-axis, as shown 
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in Figure 5.6(b). It is noteworthy that, according to (5-10), the pixel coordinates of the two key 

points on the sensor map have also been transformed after the rotation as 

 

[
𝑢𝑠𝑚1

𝑣𝑠𝑚1

1
] = 𝑻𝒔𝟐𝑹𝒔𝑻𝒔𝟏 [

𝑢𝑠1

𝑣𝑠1

1
] ,

[
𝑢𝑠𝑚2

𝑣𝑠𝑚2

1
] = 𝑻𝒔𝟐𝑹𝒔𝑻𝒔𝟏 [

𝑢𝑠2

𝑣𝑠2

1
] ,

 (5-14) 

where (𝑢𝑠𝑚1, 𝑣𝑠𝑚1) and (𝑢𝑠𝑚2, 𝑣𝑠𝑚2) are the pixel coordinates of the key points on the sensor 

map after rotation. 

Next, we modify the scale of the layout map, and the scaling matrix 𝑺𝒍 is given by 

 𝑺𝒍 =

[
 
 
 
 
𝑑𝑢𝑙

𝑑𝑢𝑠

0 0

0
𝑑𝑣𝑙

𝑑𝑣𝑠

0

0 0 1]
 
 
 
 

. (5-15) 

Then, we multiply matrix 𝑺𝒍 with the occupancy-coordinate representation matrices of the 

layout map as 

 

𝑴𝒍𝒐𝒓
= 𝑺𝒍𝑴𝒍𝒐 ,

𝑴𝒍𝒖𝒓
= 𝑺𝒍𝑴𝒍𝒖 ,

𝑴𝒍𝒇𝒓
= 𝑺𝒍𝑴𝒍𝒇 ,

 (5-16) 

where 𝑴𝒍𝒐𝒓
, 𝑴𝒍𝒖𝒓

 and 𝑴𝒍𝒇𝒓
 are the occupancy-coordinate layout map matrices after scaling. 

Since the scaling factor 
𝑑𝑢𝑙

𝑑𝑢𝑠

 may not be an integer, the obtained pixel coordinates in the 

layout map matrices 𝑴𝒍𝒐𝒓
, 𝑴𝒍𝒖𝒓

 and 𝑴𝒍𝒇𝒓
 may result in non-integers. Therefore, we firstly 

round all the values in 𝑴𝒍𝒐𝒓
, as given by 

 𝑴𝒍𝒐𝒓
(𝑖, 𝑗) = ⌊𝑴𝒍𝒐𝒓

(𝑖, 𝑗) +
1

2
⌋, ∀𝑴𝒍𝒐𝒓

(𝑖, 𝑗) ∉ ℕ, (5-17) 

where ⌊⋅⌋  is the floor function, 𝑖 = 1,2 , 𝑗 ∈ [1, 𝑁𝑙𝑜] ∩ ℤ , 𝑁𝑙𝑜  is the width of matrix 𝑴𝒍𝒐𝒓
 

and ℕ denotes the natural number set. Similarly, we round the values in 𝑴𝒍𝒖𝒓
 and 𝑴𝒍𝒇𝒓

. 

In addition, if the scaling factor is smaller than 1, after multiplying the scaling matrix, there 

will be multiple columns in 𝑴𝒍𝒐𝒓
 composed of the same pixel coordinates. Then, for each 

occupancy-coordinate matrix, we treat each column as a single entity and extract the unique 

columns with no repetitions. The extracted columns constitute three new matrices given by 
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𝑴𝒍𝒐𝒆
 , 𝑴𝒍𝒖𝒆

  and 𝑴𝒍𝒇𝒆
 . Furthermore, one pair of pixel coordinates may occur in different 

occupancy-coordinate matrices, indicating different grayscale values in the layout map image. 

To keep the consistency of the grayscale values in the map image, we propose to use the eight-

neighborhood averaging method to determine the grayscale value of a pixel that has multiple 

correspondences. For example, if pixel coordinates (𝑢𝑛 , 𝑣𝑛 ) occur in both of the first two 

columns of matrix 𝑴𝒍𝒐𝒆
 and 𝑴𝒍𝒖𝒆

, we check the eight neighbourhood pixels (𝑢𝑛 + 𝑖, 𝑣𝑛 +

𝑗), where 𝑖, 𝑗=1,0,-1, find the average of the grayscale values that these pixel coordinates refer 

to, and assign the average value to pixel (𝑢𝑛, 𝑣𝑛) given by 𝑔𝑢𝑛𝑣𝑛
. Then coordinates (𝑢𝑛, 𝑣𝑛) 

are reallocated to the occupancy-coordinate matrix by comparing 𝑔𝑢𝑛𝑣𝑛
 with the threshold 𝑡𝑓 

and 𝑡𝑜, and are removed from previous matrices 𝑴𝒍𝒐𝒆
 and 𝑴𝒍𝒖𝒆

. 

Moreover, if the scaling factor is larger than 1, there will exist unassigned pixels in the map 

image after scaling, which are regarded as holes. To maintain a consistent trend across the 

pixels, we propose to use a bilinear interpolation method to appropriately assign the grayscale 

values to these pixels by at least four well-assigned pixels. For example, the grayscale value of 

pixel (𝑢𝑘, 𝑣𝑘) is unassigned, but the grayscale values at the pixels (𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢2, 𝑣1) 

and (𝑢2, 𝑣2) are known. We first perform the linear interpolation in the u-coordinates as 

 
𝑔𝑢𝑘𝑣1

=
𝑢2−𝑢𝑘

𝑢2−𝑢1
𝑔𝑢1𝑣1

+
𝑢𝑘−𝑢1

𝑢2−𝑢1
𝑔𝑢2𝑣1

,

𝑔𝑢𝑘𝑣2
=

𝑢2−𝑢𝑘

𝑢2−𝑢1
𝑔𝑢1𝑣2

+
𝑢𝑘−𝑢1

𝑢2−𝑢1
𝑔𝑢2𝑣2

,
 (5-18) 

where 𝑔𝑢1𝑣1
, 𝑔𝑢1𝑣2

, 𝑔𝑢2𝑣1
 and 𝑔𝑢2𝑣2

 are the grayscale values of pixel (𝑢1, 𝑣1), (𝑢1, 𝑣2), 

(𝑢2, 𝑣1) and (𝑢2, 𝑣2), respectively. Then we proceed by interpolating in the v-coordinates and 

substituting the results of 𝑔𝑢𝑘𝑣1
 and 𝑔𝑢𝑘𝑣2

 from (5-18) as 

 

𝑔𝑢𝑘𝑣𝑘
=

𝑣2−𝑣𝑘

𝑣2−𝑣1
𝑔𝑢𝑘𝑣1

+
𝑣𝑘−𝑣1

𝑣2−𝑣1
𝑔𝑢𝑘𝑣2

=
1

(𝑢2−𝑢1)(𝑣2−𝑣1)
[𝑢2 − 𝑢𝑘 𝑢𝑘 − 𝑢1] [

𝑔𝑢1𝑣1
𝑔𝑢1𝑣2

𝑔𝑢2𝑣1
𝑔𝑢2𝑣2

] [
𝑢2 − 𝑢𝑘

𝑢𝑘 − 𝑢1
] .

 (5-19) 

Using (5-19), each unassigned pixel can be determined by at least four pixels allocated with 

definite grayscale values. Thereby, after multiplying a scaling matrix, a complete map image 

can be obtained by a rounding operation, eliminating duplication, eight-neighborhood 

averaging and bilinear interpolation. 
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Furthermore, similarly to the calibration method for the map orientation described in Section 

5.4.2, the calibration for scale is also scalable to the a perceived environment that contains 

multiple VLP landmarks, as long as we find the average of the scaling factor of every two key 

points on the map and substitute the average into (5-15). 

5.5 Experimental Results 

In this section, experiments are conducted to evaluate the performance of the proposed map 

calibration method. We will describe the experiment setup, evaluate map alignment 

performances and analyze the navigation results on the maps that are calibrated by the proposed 

method. 

5.5.1 Experiment Setup 

 

Figure 5.7: Experimental setup: (a) a building blueprint, (b) a floor map, (c) three VLP 

landmarks, (d) a TurtleBot3 Burger robot. 
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Table 5.1: Experimental Parameters 

LED Height 2.7 m 

LED Diameter 0.175 m 

LED Power 18 w 

Camera Resolution 2048×1536 

The experiment is performed in our lab (Integrated Circuit Design Center, 3/F, CYT 

Building, HKUST). Two maps with different accuracies are prepared: one is a building 

blueprint with a high accuracy and the other is a floor map with a rough accuracy, as shown in 

Figure 5.7(a) and (b). We set three VLP lights as landmarks at different locations in the 

perceived environment, as illustrated in Figure 5.7(c). They are modulated with different IDs, 

which are encoded with different positioning information stored in the database. Figure 5.7(d) 

illustrates the TurtleBot3 Burger robot, the ROS standard platform robot we use for the VLP 

receiver and SLAM process. The robot is equipped with a Raspberry Pi 3 Model B, running 

Ubuntu 16.04 with ROS. Sensors are mounted on the robot for the SLAM process and VLP 

decoding. These include an IMU, odometer, 360o  LiDAR and an industrial camera facing 

toward the ceiling. We use a laptop running Ubuntu 18.04 with ROS to remote control the robot 

and record the data from the robot in the mapping process. The experimental parameters and 

the camera options are summarized in Table 5.1. 

5.5.2 Mapping Process and Alignment Results 

In the mapping experiment, we set the robot under VLP light No. 1 as the starting point and 

control it to move to VLP light No.2 and then No.3. At the same time, the robot performs 

SLAM using the Gmapping [19] package in ROS. Thus, the robot’s location on the SLAM map 

and position as estimated by the VLP system are recorded synchronously, and the SLAM map 

is visualized in RViz software on the laptop, as shown in Figure 5.8. After the robot has tracked 

all three VLP lights, the occupancy grid map is saved. Then we perform the proposed map 

calibration method to calibrate the orientation and scale of the saved sensor map and the 

building blueprint. To intuitively evaluate the performance of the map calibration results, we 

align the two maps, specifically, translating the key points to the same pixels on the map. Then 
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we overlap the pixels which are occupied to compare the structures shown on different maps 

of the same experimental area.  

 

Figure 5.8: Mapping process visualized in RViz. 

By multiplying the scaling matrix as (5-15) and rounding the values, the pixel coordinates 

of the key points on the layout map after scaling can be computed as (⌊
𝑑𝑢𝑙

𝑑𝑢𝑠

𝑢𝑙1 +
1

2
⌋, ⌊

𝑑𝑣𝑙

𝑑𝑣𝑠

𝑣𝑙1 +

1

2
⌋) and (⌊

𝑑𝑢𝑙

𝑑𝑢𝑠

𝑢𝑙2 +
1

2
⌋, ⌊

𝑑𝑣𝑙

𝑑𝑣𝑠

𝑣𝑙2 +
1

2
⌋). Then we translate the pixels on the sensor map so that the 

key points on the two maps are located at the same pixel coordinates. The translation matrix is 

given by 

 𝑻𝒔𝟑 =

[
 
 
 
 
 
1 0

⌊
𝑑𝑢𝑙
𝑑𝑢𝑠

𝑢𝑙1+
1

2
⌋−𝑢𝑠𝑚1+⌊

𝑑𝑢𝑙
𝑑𝑢𝑠

𝑢𝑙2+
1

2
⌋−𝑢𝑠𝑚2

2

0 1
⌊
𝑑𝑣𝑙
𝑑𝑣𝑠

𝑣𝑙1+
1

2
⌋−𝑢𝑠𝑚1+⌊

𝑑𝑣𝑙
𝑑𝑣𝑠

𝑣𝑙2+
1

2
⌋−𝑣𝑠𝑚2

2

0 0 1 ]
 
 
 
 
 

. (5-20) 

Multiplying the translation matrix in (5-20), the translated matrices are given by 

 𝑴𝒔𝒐𝒕
= 𝑻𝒔𝟑𝑴𝒔𝒐𝒎

. (5-21) 

Then we find all the pixels on the layout map, whose coordinates are given in 𝑴𝒔𝒐𝒕
, and 

allocate these pixels with the grayscale values of the same pixels on the sensor map. 
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We first calibrate the building blueprint as shown in Figure 5.7(a), with two key points given 

by VLP lights No.1 and No.3. The alignment result is shown in Figure 5.9(a), and we check 

the pixel distance between the left bottom corners of cubicle B13 on the two maps given by 34 

pixels. By multiplying the resolution of the map in terms of meters per pixel, the distance will 

be 0.85 m in the world coordinate system. To improve the alignment performance, we further 

add one key point given by VLP light No.2 by determining the rotation angle and scaling factor 

with the average of every two key points. The alignment result based on three key points is 

illustrated in Figure 5.9(b), and the distance between the left bottom corners of cubicle B13 is 

given by 11 pixels in the pixel coordinate system and 0.275 m in the world coordinate system. 

Therefore, increasing one key point in the mapping process will improve the map alignment 

performance. In the next section, to achieve better navigation performance, we use the layout 

maps calibrated with three key points. 

 

Figure 5.9: Map alignment result of the building blueprint and sensor map: (a) based on 

two key points, (b) based on three key points. 
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5.5.3 Navigation on Calibrated Map 

 

Figure 5.10: Navigation goal and navigation results on the sensor map, floor map and 

building blueprint. 

 

Figure 5.11: Navigation process with LiDAR detection results, DWA local plan and 

Dijkstra's global plan. 
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Table 5.2: Navigation Results 

Points Sensor Map (cm) Building Blueprint (cm) Floor Map (cm) 

① 65 45 49 

② 67 46 50 

③ 83 57 59 

④ 88 60 59 

⑤ 90 62 63 

Average 78.6 54 56 

To further evaluate the performance of the proposed map calibration method, we use a 

navigation system based on an adaptive Monte Carlo localization (AMCL) [20] package, 

Dijkstra’s algorithm [21] package and dynamic window approach (DWA) [22] package in ROS 

to achieve autonomous navigation of the robot on the calibrated maps. We set the navigation 

goal of the robot to be next to cubicle B06, as shown in Figure 5.10. The distance between the 

starting point and the target point is 14.14 m. During the navigation, the position of the robot 

is determined by the AMCL method. The global plan is achieved by Dijkstra’s algorithm, and 

the local plan is designed by the DWA planner. As shown in Figure 5.11, the blue dots 

encapsulated in the outlines in pink are the obstacles detected by the LiDAR on the robot. The 

red line is the DWA local planner, and the green line, which connects to the navigation goal, 

represented by a red arrow, is the global plan based on Dijkstra’s algorithm. On each map, we 

repeat the navigation five times and the navigation results on the different maps are illustrated 

in Figure 5.10 and summarized in Table 5.2. The table lists the distance between the actual 

point reached in the real world and the target destination sent to the robot. Compared with the 

navigation results on the sensor map, those on the calibrated building blueprint and the 

calibrated floor map are much closer to the set destination. The average navigation accuracy is 

improved by 24.6 cm on the building blueprint and 22.6 cm on the floor map, respectively. 

Furthermore, with the proposed calibration method, the robot on the floor map, which has lower 

accuracy in scale and structure location than the building blueprint, can achieve a navigation 

performance nearly as good as that on the building blueprint, which verifies the effectiveness 
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of the proposed map calibration method. As mentioned in Section 5.1, the sensor map generated 

using SLAM is with noise and distorted as shown in Figure 5.10. However, the noisy sensor 

map will not degrade the calibration performance as listed in Table 5.2 as the calibration 

process is based on the positions of the key points on the two different maps. The positions of 

the key points on the layout map are estimated by the proposed high-accuracy VLP system. 

5.5.4 Navigation with Semantic Information 

 

Figure 5.12: Compiled semantic information on the floor map. 

As we mentioned in Section 5.1, a layout map contains semantic information which is 

accessible to humans and allows them to send instructions to robots. After calibrating the layout 

map, we cannot only send the navigation target to the robot by selecting one point on the map, 

but also navigate the robot with pre-compiled semantic information on the layout map. For the 

floor map illustrated in Figure 5.7(b), we compile three positions with semantic information, 

as shown in Figure 5.12, where D49 refers to Johnny’s cubicle, D50 refers to Frederick’s 

cubicle and B01 refers to the last line of the test bench. Figure 5.13 illustrates the navigation 

experiment with semantic information. When the program starts, the semantic information of 

the map is shown in the terminal, as shown in Figure 5.13(a). Then we send a navigation goal 

by tapping the target identifier number of the semantic information, and a red arrow indicating 

the aimed point is marked on the floor map, as shown in Figure 5.13(b). Figure 5.13(c) 

illustrates the condition that the robot has arrived at the target point and the semantic 

information is illustrated again in the terminal. We can repeat the navigation process by tapping 
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another identifier number of the navigation goal, as shown in Figure 5.13(d). Using this process, 

the semantic information on the floor map helps humans to set tasks for the robots in a more 

straightforward and user-friendly way compared with a sensor map, which has no semantic 

information. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.13: Navigation process with semantic information: (a) sending the command to 

the robot, (b) robot navigating to the target point, (c) after reaching the target point, robot 

waiting for the next navigation goal, (d) robot navigating to the second target point. 

5.6 Summary  

In this chapter, we propose a VLP landmark and SLAM-assisted automatic map calibration 

method for robot navigation. VLP landmarks with different IDs are mounted in the 
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environment to be perceived, and a layout map of the environment is prepared to be calibrated. 

By tracking the landmarks and conducting SLAM at the same time, the robot’s position as 

obtained from the VLP method and the position as obtained from SLAM are recorded 

synchronously with the time stamp. By aligning the recorded coordinates on the layout map 

and the sensor map saved from SLAM, the orientation and the scale of the layout map is 

calibrated. Experiments are performed to evaluate the proposed map calibration system in 

terms of the map alignment performance and navigation performance. We calibrate two layout 

maps: a building blueprint of high accuracy and a floor map of rough accuracy. The experiment 

results show that the robot can achieve a better navigation performance on the calibrated layout 

maps compared with that on the sensor map, and can achieve the navigation performance on 

the calibrated floor map almost the same as that on the calibrated building blueprint. 
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CHAPTER 6 Conclusion, Future Work and Publications 

6.1 Summary of Contributions 

In this thesis, a high-accuracy visible light positioning (VLP) system is proposed, based on 

which robotic navigation and map construction is also achieved. The key contributions can be 

divided into the following three parts: 

(1) A tilted receiver camera correction and partially blocked LED image compensation 

method is proposed for indoor VLP systems. The proposed VLP system does not require the 

LEDs to be placed at high density and can eliminate the additional positioning errors caused 

by a tilted receiver camera in realistic scenarios. We propose two methods to detect the 

geometric features of the captured LED images, and the experimental results show that both 

methods perform better than the existing single LED-based VLP methods in ideal scenarios. 

Furthermore, the two proposed methods outperform the existing methods and can effectively 

suppress the performance degradation when an incomplete LED image is captured. Therefore, 

the proposed methods can provide stable positioning services and further improve the 

robustness of the VLP system. 

(2) An indoor VLP platform for real-time robotic localization and navigation is developed. 

It implements a completed positioning system with LEDs as transmitter and a camera on the 

robot as receiver and the position information is shown on the remote terminate in real time. 

The proposed system design will stimulate a wide range of the innovative utilization of VLP 

technology. Based on the proposed robot positioning and navigation system, a panorama 

creation method is proposed which can generate a panorama at any target point using a robot 

mounted with a typical USB camera. 

(3) A VLP landmark and SLAM-assisted automatic map construction method is proposed to 

improve robot navigation. VLP landmarks with different IDs are mounted in the environment 

to be perceived, and a layout map of the environment is prepared to be calibrated. By tracking 

the landmarks and conducting Simultaneous Localization and Mapping (SLAM) at the same 

time, the robot’s position as obtained from the VLP method and the position as obtained from 
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SLAM are recorded synchronously with the time stamp. By aligning the recorded coordinates 

on the layout map and the sensor map saved from SLAM, the orientation and the scale of the 

layout map is calibrated. Experiments are performed to evaluate the proposed map calibration 

system in terms of the map alignment performance and navigation performance. We calibrate 

two layout maps: a building blueprint of high accuracy and a floor map of rough accuracy. The 

experiment results show that the robot can achieve a better navigation performance on the 

calibrated layout maps compared with that on the sensor map, and can achieve the navigation 

performance on the calibrated floor map almost the same as that on the calibrated building 

blueprint. 

6.2 Future Work 

The high-accuracy indoor positioning robotic system presented in the thesis will serve as a 

platform for further research in following key areas. 

6.2.1 An Prior Information Assisted Distortion Elimination Method for Occupancy Grid Map 

Construction 

An occupancy grid map contains three kinds of information representing by different values 

of gray scale given by occupied, free of scale and unknown. Each cell contains the probability 

that it is occupied. Occupancy grid maps are usually constructed by robots conducting SLAM. 

Mapping process requires the probability that cell is occupied. SLAM requires the probability 

that the cell is occupied and where the robot is. Conventional SLAM is based on light detection 

and ranging (LiDAR), odometer, inertial measurement unit (IMU) and other inertial sensors, 

and uses odometer for robotic positioning and LiDAR to detect obstacles and correct the 

accumulated error from odometer. However, one crucial drawback of SLAM is that the 

constructed map will get distorted with time due to the drift of the estimated robot position 

caused by the accumulated error from the sensors. By inducing VLP-based landmarks to a 

SLAM system to correct the distortion of the occupancy grid map caused by the accumulated 

error from the odometer, the absolute positioning results from VLP lights can help increase 

positioning accuracy. Furthermore, if we already have an accurate layout map, the gray scale 
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values on the layout map can provide the prior information for LiDAR detection and correct 

the distortion caused by the odometer as well. There are two main challenges in the proposed 

work. One is to remove the semantic information on a layout map as a layout map always 

contains semantic information for human readers. The other one is how to determine the weight 

of the probability provided by the layout map and the weight provided by the sensor 

observations and control input. 

6.2.2 Automated 3D Reconstruction using Robot-mounted 360-Degree Camera with Visible 

Light Positioning Technology for Building Information Modelling Applications 

Building Information Modelling (BIM) is a method using well-structured digital 

information for generating, delivering and handling data on a design project during its 

construction lifecycle. By creating a digital BIM, all necessary parties, including engineers and 

project coordinators, can communicate efficiently and effectively resulting in a higher overall 

value. BIM brings 3D construction information of every component in a building together, 

which helps to schedule, monitor and inspect the construction projects. Currently, BIM 

construction and project progress inspection is done by software engineers and staff holding 

360-degree cameras to take photos at multiple locations. Although 360-degree photos captured 

at construction site are static and discontinuous with each other, they provide redundant visual 

information on the existing BIM model, which is the pain point of current solution. Therefore, 

facing the needs of a new generation of intelligent construction, how to construct a real-time 

dynamic self-reconfiguration high-accuracy positioning system based on the existing 

technology is of great significance. Through the combination of intelligent robots and 

omnidirectional vision, it is expected to provide BIM with full-cycle, multi-angle, high-

precision environmental sampling data, so as to provide support for better optimization of the 

construction process. 

We propose to use 360-degree photos to reconstruct 3D models for buildings and use indoor 

VLP technology for robots, such as automated guided vehicle (AGV), mounted with 360-

degree camera to acquire and label the positioning data of the captured 360-degree photos. This 

helps to provide quick updates of the dynamic changes at the on-going construction site, 
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minimize the risk of mistakes, reduce discrepancies, and lower abortive costs. Furthermore, 

during the construction with BIM model, 360-degree camera-aided 3D reconstruction is an 

efficient way to survey the facilities and capture all of the information in 3D for lifecycle 

management. 

The use of 360-degree cameras with indoor VLP technology to create 3D construction could 

become very useful to provide inspection of no matter how long and narrow spaces and add 

these spaces to BIM model. At present, the market has great demand for this technology, but 

there is still no suitable product available. On one hand, it is limited by the accuracy of indoor 

positioning, and on the other hand, it is limited by the accuracy of multi-view stereo. Therefore, 

the plan proposed in this project is intended to break through the bottleneck problem: 1) Utilize 

the combination of indoor mobile platform and VLP technology to achieve centimeter-level 

positioning capabilities in any indoor environment; 2) Use the 360-degree camera to 

dynamically collect environment images to realize the centimeter-level distributed 

environment reconstruction ability; So as to provide the first efficient solution for BIM industry 

applications. 

Figure 6.1 describes the hardware and processing flow of the proposed project. VLC 

modulated LED lights are used as location beacons to provide location signals that are captured 

by the robots to calculate 3D position with cm-level accuracy that can be translated to 

determine the camera pose of the 360-degree camera mounted on top of the robots. Each 360-

degree image is unfolded into four 2D images initially. As 3D reconstruction proceed, the 

number of dissected 2D images are optimized depending on the performance of our proposed 

visual-robotics-VLP-based 3D reconstruction scheme. 
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Figure 6.1: Conceptual diagram illustrating 3D reconstruction using 360-degree cameras 

mounted on multiple mobile robots, and visible light communication (VLC) sources used for 

3D localization and camera pose estimation. 
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